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ABSTRACT 

 

This paper explores the synergistic application of simulation methodologies to create and validate artificial neural 

networks (ANNs) for modeling complex dynamic systems. The integration of simulation techniques with ANNs 

offers a powerful approach to capturing the intricate behaviors of dynamic systems, enhancing the accuracy and 

reliability of predictive models. The paper discusses the challenges associated with modeling complex dynamic 

systems and the limitations of traditional analytical approaches. It highlights the increasing importance of artificial 

neural networks as versatile tools for capturing non-linear and dynamic relationships within such systems. The 

proposed methodology involves a two-fold process. Firstly, a detailed simulation of the dynamic system is 

conducted to generate comprehensive datasets that reflect the system's behavior under various conditions. These 

datasets serve as the training and validation inputs for the artificial neural network. Secondly, an ANN is developed 

and trained using the simulated data, allowing it to learn the complex relationships within the dynamic system. The 

paper emphasizes the advantages of this integrated approach, including the ability to handle non-linearity, 

adaptability to dynamic changes, and improved generalization capabilities. Case studies are presented to 

demonstrate the application of this methodology in diverse fields, such as finance, manufacturing, and modeling 

weather patterns. Furthermore, the paper discusses the importance of validation techniques to ensure the accuracy 

and reliability of the developed ANN. The findings suggest that the integration of simulation techniques in the 

development and validation of ANNs contributes to a more robust and accurate representation of complex dynamic 

systems. The paper concludes by highlighting the potential applications and future directions of this integrated 

approach in areas such as predictive maintenance, process optimization, and decision support systems for dynamic 

and complex environments. 
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ABSTRACT 

 

This paper explores the synergistic application of simulation methodologies to create and validate artificial neural 

networks (ANNs) for modeling complex dynamic systems. The integration of simulation techniques with ANNs 

offers a powerful approach to capturing the intricate behaviors of dynamic systems, enhancing the accuracy and 

reliability of predictive models. The paper discusses the challenges associated with modeling complex dynamic 

systems and the limitations of traditional analytical approaches. It highlights the increasing importance of artificial 

neural networks as versatile tools for capturing non-linear and dynamic relationships within such systems. The 

proposed methodology involves a two-fold process. Firstly, a detailed simulation of the dynamic system is 

conducted to generate comprehensive datasets that reflect the system's behavior under various conditions. These 

datasets serve as the training and validation inputs for the artificial neural network. Secondly, an ANN is developed 

and trained using the simulated data, allowing it to learn the complex relationships within the dynamic system. The 

paper emphasizes the advantages of this integrated approach, including the ability to handle non-linearity, 

adaptability to dynamic changes, and improved generalization capabilities. Case studies are presented to 

demonstrate the application of this methodology in diverse fields, such as finance, manufacturing, and modeling 

weather patterns. Furthermore, the paper discusses the importance of validation techniques to ensure the accuracy 

and reliability of the developed ANN. The findings suggest that the integration of simulation techniques in the 

development and validation of ANNs contributes to a more robust and accurate representation of complex dynamic 

systems. The paper concludes by highlighting the potential applications and future directions of this integrated 

approach in areas such as predictive maintenance, process optimization, and decision support systems for dynamic 

and complex environments. 

 

 

INTRODUCTION 

 

With the advancement of technology, artificial intelligence is at the forefront of emerging technology. Artificial 

Intelligence is typically linked to services and goods provided by companies such as OPEN AI and Tesla. However, 

many overlook the benefits this type of technology can provide engineers. The key component of artificial intelligence 

is the series of multilayered algorithms that use the concept of deep learning. The algorithms are organized with 

weighting factors into nodes. The path that the input data takes from weighted connections to neurodes replicates how 

data is processed by the brain (1). Neural networks can be modified for different uses by manipulating the number of 

hidden layers and nodes used to process data (1). Artificial intelligence and neural networks are used for the following 

engineering applications: visual inspection, trending data, and building enhanced digital twins. When used properly, 

neural networks can help engineers solve problems and debug equipment issues faster than current engineering 

techniques (6). In this paper, we will be examining the ability of artificial neural networks to model complex 

engineering systems and debug problems. Specifically, neural networks were used to model first and second-order 

engineering problems. The neural networks are compared to a Simulink model to look at the neural network’s ability 

to predict the maximum peak and the settling time of a single mass and a two-mass system. Finally, the neural network 

is presented with a problem that contains error to give the neural network a more complex model to solve. Overall 

neural networks are excellent tools for modeling complex engineering systems; however, the engineer needs to be 

mindful of the noise present in the engineering system. Neural networks are very susceptible to error propagation, 

especially if the signal used by the neural network is noisy. The engineer must review the results of the neural network 

carefully and possibly perform an FFT to ensure that the neural network is analyzing the signal of interest.   
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Basic Spring Mass System 

 
Neural networks have the capability to improve an engineer’s ability to solve problems when there is not enough 

information to create the necessary system of equations to do a thorough analysis. Neural networks can bridge this 

gap by analyzing the system’s output data and predicting future outputs of the system. For the first example, a 

simple mass-spring-damper system was modeled in Simulink. The Simulink model contained an ideal spring and an 

ideal damper. The second-order differential equation used as the basis for 

the model can be seen below in Equation 1. F  corresponds to the external 

force applied to the system, B*x’(t) corresponds to the damping force 

applied to the mass, k*x(t) corresponds to the force applied by the spring, 

and M*x” (t) corresponds to the force related to Newton’s second law (6).  

 
𝜕2𝑥

𝜕𝑡2 ∗ 𝑀 +
𝜕𝑥

𝜕𝑡
∗ 𝐵 + 𝑘 ∗ 𝑥 = 𝐹                                          (1)                                             

 

The ideal Simulink model can be seen in Figure 1. A singular mass is 

connected to a spring and a damper. The signal is then run through a 

translational motion sensor allowing the signal to be exported and graphed. 

Figure 2 shows the position of the single mass versus time. Based on the 

results of the graph, a user can determine that the spring-mass system was 

overdamped and that the mass essentially stopped moving after 10 seconds. 

These results were based on the following initial conditions: 𝑀 = 10 𝑘𝑔, 𝐵 = 200
𝑁∗𝑠

𝑚
 , 𝑘 = 200

𝑁

𝑚
,  v0 =5 m/s,  x0 

= 0 m, F0 = 0. If an engineer was unable to determine the best-set points or initial conditions of the system, a neural 

network could determine the unknown parameters. The engineer could use Matlab to create a code that would run 

this simulation through different spring constants, damping coefficients, and 

mass amounts. The neural network could construct a section of predicted 

responses. This would allow the engineer to look at the maximum 

displacement of the mass and the settling time and select the best set-points to 

optimize their design. 

 

For this example, the Matlab code simulated ranges for mass, spring constant, 

and damping coefficients. The max deflection and the settling time for each 

set point were recorded. All the data generated was saved to an Excel file. The 

data generated from the Simulink model was used to train the neural network. 

Then the neural network generates a wider set of predicted max deflection and 

settling time responses. A confirmation data set was run through the 

simulation and used to check the accuracy of the neural network’s prediction. 

Figure 3 and 4 show the maximum displacement of the single spring-mass 

system and the accuracy of the neural network. Figure 3 shows the max 

displacements of the single mass ranging from (0.2 to 0.9) m. The blue line in Figure 

3 shows the response of the Simulink model; the neural network predicted responses 

are shown with the red circles. Based on the results of Figure 3, the neural network performed well in predicting 

max deflection responses based on the training data. The error histogram, shown in Figure 4, highlights the neural 

network's performance in analyzing the data. A good model fit is achieved when all the model error is consolidated 

next to the zero-error line. The error histogram shows that the neural network performed well, fitting the training 

data. 

 

 

Figure 1: Simulink Model of Ideal Mass-Spring-

Damper System.  

Figure 2: Position of the single mass 

versus time.  
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One of the reasons the neural network performed well fitting the maximum displacement is because the position of 

the single mass is a first-order response. The settling time of the single mass is more challenging for the neural 

network to model because it is a second-order response. The results can be seen below in Figure 5 and Figure 6. The 

settling time of the single mass can be identified by the blue line in Figure 5. Whereas the neural network's predicted 

response is represented by the red circles in Figure 5. Figure 6 shows that the neural network generated a good 

model fit, because the error bars were centered around the zero-error bar. 

 

 

 

 

 

 

 

 

 

 

 

 

After generating the results shown in Figure 5 and Figure 6, the neural network ran through a set of testing data, and 

the Simulink test responses were compared to the data generated by the neural network. In total, there were 144 

confirmation data points. A selection of these confirmation points can be seen below in Table 1. 

Figure 3: Maximum displacement of 

single mass system predicted by the 

neural network.  

Figure 4: Error histogram of the neural 

network  

Figure 5: Settling time of the single 

mass.  

Figure 6: Error histogram for neural 

network.   
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Set Points Max Peak 

Predicted 

Max Peak 

Actual 

Max Peak % 

Error  

Settling Time 

Predicted 

Settling Time 

Actual 

Settling 

Time % Error 

M = 15 kg 

B = 250 N*s/m 

K = 250 N/m 

0.2632 0.2742 4.213 3.315 3.400 2.575 

M = 25 kg 

B = 250 N*s/m 

K = 450 N/m 

0.3872 0.3830 1.074 1.935 1.753 9.395 

M = 35 kg 

B = 850 N*s/m 

K = 450 N/m 

0.1928 0.2028 5.184 5.675 4.481 21.04 

M = 45 kg 

B = 750 N*s/m 

K = 350 N/m 

0.2479 0.2652 6.968 7.205 7.239 0.4758 

Table 1: Predicted maximum peak and settling time data from the neural network versus the value achieved by the 

Simulink model.  

 

Based on the results in Table 1, the neural network was more accurate in predicting the max deflection achieved by 

the mass. All the predicted values had less than 10% error, which is acceptable for a first attempt without 

optimization. The predicted settling time was a less successful model. The neural network percent error varied from 

0.47% to 21%. The biggest difference between the two responses is that the settling time is a second-order response, 

making it more difficult to predict. The predictive capability of the neural network can be improved by increasing 

the range of training data or changing the backpropagation algorithm. 

 

The results generated by the neural network in Figure 5 and Figure 6 highlight the capability of this program to 

enhance engineering models and problem-solving. An engineer can use the available tools in Matlab and Simulink 

to go through potential design flaws with a digital twin or feed the data into the neural network to gain an enhanced 

view of the system. Although the single mass-spring system showcased the neural network’s capability, it is a 

relatively simple model for the neural network to work with. To gain a better indication of the neural network's 

capability to model complex systems more complex models were generated. 

 

2 Mass 2 Spring 2 Damper System 

 

To gain a fuller understanding of the neural network’s capability a two-mass system was modeled in Simulink. The 

position and settling time of the second mass were exported to Matlab and a neural network was used to predict the 

position of the second mass and the settling time. Figure 7 shows the Simulink model of the two mass, two spring, 

two damper system. The goal of this model is to test the neural network’s capability of modeling increasingly 

complex systems and test the accuracy of its predictive capability. Unlike the first model, this model is less damped 

which can be seen by the oscillation of the second mass’ position versus time. The system of equations used to 

govern the t system can be seen below. The forces acting on the system are separated between the two masses. For 

this example, we are only focusing on the forces effecting the second mass. 𝐹 is the forcing function which is 

applied externally to the system. The force applied by the second spring based on the displacement of both masses is 

represented by 𝑘2 ∗ (𝑥2 − 𝑥1). The damping force applied by the second damper is related to the velocity of each of 

the masses shown by term  𝑏2 ∗ (
𝜕𝑥2

𝜕𝑡
−

𝜕𝑥1

𝜕𝑡
). The term  𝑀2 ∗

𝜕2𝑥2

𝜕𝑡2  is related to the acceleration of the second mass.  
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 𝑀1:  𝑀1 ∗
𝜕2𝑥1

𝜕𝑡2 = 𝑘2 ∗ (𝑥2 − 𝑥1) + 𝑏2 ∗ (
𝜕𝑥2

𝜕𝑡
−

𝜕𝑥1

𝜕𝑡
) − 𝑘1 ∗ 𝑥1 − 𝑏1 ∗

𝜕𝑥1

𝜕𝑡
                                         (2) 

𝑀2:  𝑀2 ∗
𝜕2𝑥2

𝜕𝑡2 = 𝐹 − 𝑘2 ∗ (𝑥2 − 𝑥1) − 𝑏2 ∗ (
𝜕𝑥2

𝜕𝑡
−

𝜕𝑥1

𝜕𝑡
)                                                                     (3) 

 

 

Figure 8 shows the position of the second mass versus time. The additional forces acting upon the second mass 

cause the oscillation seen in Figure 8. The neural network was used to determine the max peak or position of the 

second mass versus time. The results were generated after the neural network ran through a range of values for the 

mass, the spring constant, and the damping coefficient. The results generated by the Simulink model are shown as 

the blue line in Figure 9. The neural network’s responses are the red dots in the same figure. Like with the first 

theoretical model, the neural network performed well determining the maximum displacement of the second mass. 

The red circles are laid over the blue Simulink model seamlessly. However, the error histogram, shown in Figure 10, 

shows significantly more model error than the single mass model. The model error is centered around the zero-error 

line, which indicates a good model fit. When you compare the range of model error, it is much larger than the single 

mass model. This would indicate that the neural network has overfitted the maximum peak results, and some edits to 

the neural network algorithm are necessary.  

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Maximum peak/deflection 

of the second mass versus time.  

Figure 10: Error histogram for max 

deflection of the second mass.  

Figure 7: Simulink model of the two mass, two spring, 

two damper system.   

Figure 8: Position of the second 

mass versus time.  
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The neural network also predicted the settling time of the second mass. For the same ranges of inputs used for the 

max peak/deflection, the neural network predicted the time it would take for the second mass to stop moving. The 

results from the neural network and Simulink analysis, can be seen in Figure 11 and Figure 12 below.  

 

 

 

 

 

 

 

 

 

 

 

 

As with the max deflection, the neural network performed well, fitting the settling time of the second mass. Like the 

previous graphs, the blue line is the result of the Simulink model, and the red circles are the predicted values from 

the neural network. The neural network-generated result lies perfectly on top of the Simulink-generated response. 

The error histogram also indicates a good model fit by the neural network, as seen in Figure 12. All the model error 

is consolidated around the zero-error line, and the model error range is significantly smaller than the max peak 

response. Based on the results generated in Figures 9 – 12, the neural network shows its adept ability to predict 

second-order mechanical responses without knowing any of the information necessary to solve the system of 

equations. However, there are a couple of points that need to be considered before using neural networks for detailed 

engineering analyses. 

 

2 Mass, 2 Spring, 2 Damper System with Gaussian Noise 

 
While neural networks have proved to be competent at analyzing theoretical engineering systems. All of the 

engineering systems modeled in Simulink were ideal representations of engineering systems. For neural networks to 

be useful to engineers when problem-solving, they need to be able to analyze non-ideal systems with unknown 

amounts of error. To understand the neural network's capability, Gaussian error was added to the two-mass, two 

spring, two damper system. The Simulink model is shown in Figure 13 below, the AWGN channel simulates 

feedback error in the sensors that recorded the position and time of the two masses. Figure 14 shows the position of 

the second mass versus time; the impact of the Gaussian noise can be seen with the markers staggered throughout 

the position curve. However, the neural network has no issues analyzing the test data and predicting the maximum 

peak. 

Figure 11: Predicted versus actual 

settling time of the second mass.   

Figure 12: Error histogram of settling 

time prediction for second mass.   
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Figure 15 and Figure 16 show the neural network responses for the predicted peaks of the second mass. Although 

Figure 14 displays the visible impact from the Gaussian noise, there was no impact on the neural network’s 

determination for maximum peak. Like the previous two mass system models, the neural network fit the data well. 

However, the range of model error indicates that the neural network may have overfit the model, and a new back-

propagation algorithm may be necessary.  

 

 

 

Figure 17 and Figure 18 show the settling time and error histogram for the two mass, two spring, two damper system 

with Gaussian error. Unlike the maximum peak, the settling time is greatly affected by Gaussian error. The main 

reason is that this is a second-order model and harder for the neural network to predict. This can be seen visually in 

Figure 17, the responses created by the neural network are spread all over the Simulink response. However, they do 

not follow the pattern created by the Simulink model. The overall error histogram, shown in Figure 18 displayed a 

relatively good model fit. Based on the results shown above, neural networks are susceptible to random noise; if an 

engineer is modeling an unknown system with a neural network, an analysis of collected data should be performed, 

to minimize the effect of random noise. Otherwise, the accuracy of the results produced by the neural network is 

limited. For this analysis an FFT was performed to filter out the sensor noise. 

Figure 13: Simulink model of two mass, two spring, two damper  system with 

Gaussian error.   

Figure 14: Position of the second 

mass with Gaussian error versus 

time.   

Figure 15: Maximum peak of the 

second mass with gaussian error.    

Figure 16: Error histogram for the 

maximum peak with gaussian error.    
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As shown in Figure 17, the neural network fit the settling time data with the Gaussian error. However, the neural 

network results were general and not precise enough for an engineering analysis. To increase the accuracy of a 

neural network a FFT was performed to remove additional noise from the neural network inputs. Figure 19 shows 

the position of the second mass versus time, corrupted by sensor noise. Figure 20 shows the FFT performed in 

Matlab. There is only one signal that is necessary for the neural network.  

 

 

 

 

 

 

 

 

 

 

 

After performing the FFT analysis, the neural network was run with the filtered signal. The two mass two spring 

system with filtered data produce a settling time response shown in Figure 21, and an error histogram in Figure 22. 

With the filtered data, the neural network was capable of predicting the settling time. The red circles followed all the 

Simulink data seamlessly. The error histogram also showed the improved performance of the neural network with 

filtered data. Nearly all the model data is consolidated around the zero-error bar, indicating an excellent model fit. 

Neural networks are capable and can create precise digital twins. The user needs to be mindful of the type of data 

being used to create the engineering model. If the data sources contain too much noise, then the generated model 

will be compromised. It is recommended to use data filters to ensure that model error does not confound the model.  

Figure 17: Settling time of second 

mass with Gaussian error 

Figure 18: Error histogram for the 

maximum peak with gaussian error.    

Figure 19: Signal of second mass 

position corrupted with noise.    

Figure 20: FFT for 2 mass, 2 spring, 

2 damper analysis.     
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CONCLUSION 

 
In conclusion, the integration of simulation techniques for the development and validation of artificial neural 

networks (ANNs) represents a very useful advancement in the field of artificial intelligence. Through the application 

of modeling of dynamic systems, it is possible to enhance the robustness, efficiency, and reliability of ANNs across 

diverse domains. This paper explored the accuracy of ANN based on data sets generated by numerical simulation of 

simple dynamic system while examining output, settling time, which has non-linear and discontinuous behavior for 

different sets of system parameters. The results indicate that simulation is very powerful tool in development and 

verification of ANN. 

Looking ahead, the integration of simulation techniques holds significant promise for advancing the capabilities and 

applicability of artificial neural networks in critical areas such as autonomous systems, healthcare informatics, 

financial modeling, and environmental science. However, continued research is needed to refine existing simulation 

methodologies, develop standardized practices for integration with ANN frameworks, and explore novel approaches 

for leveraging simulation data effectively. 

In summary, the integration of simulation techniques represents a transformative paradigm in the development and 

validation of artificial neural networks, empowering researchers to push the boundaries of AI innovation and unlock 

new opportunities for addressing complex real-world challenges. 
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