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ABSTRACT 

 
With the increasing sophistication of cyber threats and the frequency of ever-changing attacks, there is a pressing need 
to fill gaps in the cyber workforce without sacrificing training quality and relevancy. Additionally, current strategies 
for cybersecurity operations planning, assessment, and training are traditionally manual and resource-intensive, 
driving demand for innovative solutions that are automated, cost-effective, and adaptive. This work introduces a new 
constructive cybersecurity simulation that is expansive in the types of threats and networks it can model, scalable in 
the number of network entities and vulnerabilities to simulate, and aims to train and evaluate automated and human 
cyber attackers. 
 
This new simulation is designed to follow the National Institute of Standards and Technology (NIST) for common 
cyber-attack vectors and standards and OpenAI and Farama’s Gymnasium standard to facilitate the development of 
adaptive machine learning agents that can act as automated offensive forces (OPFOR) within the cyber realm. 
Additionally, the environment is used to develop and assess digital twins of known attacker and network profiles. 
These agents and digital replicas can emulate real advanced threats like red teamers, smart botnets, IoT devices, and 
swarms, ensuring a realistic training ground for cyber defenders, researchers, and cyber BLUFOR systems. By 
enabling the creation of automated cyber role players and the safe examination of cyber threats and countermeasures, 
this simulation significantly reduces the financial and temporal costs associated with cybersecurity workforce 
development and the advancement of automated cyber technologies. 
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INTRODUCTION 
 
The dynamic and ever-evolving nature of cybersecurity poses significant challenges in both the development of a 
skilled workforce and the implementation of effective defense strategies against increasingly sophisticated cyber 
threats. Recent trends in the cyber landscape, such as the proliferation of Internet of Things (IoT) devices, the surge 
in Internet users, and the expansion of potential vulnerabilities, have resulted in a dramatic escalation in both the 
frequency and complexity of cyber-attacks. For instance, the early 2010s were characterized by widespread email 
spam containing viruses and worms, demanding extensive efforts in network security management. However, 
today's cyber attackers exhibit greater sophistication, employing automated and targeted spear-phishing tactics to 
infiltrate organizations, leading to significant data breaches and ransom demands. The volume of attacks is 
overwhelming, with over 43 trillion security signals captured daily in 2022, indicating a rise in identity theft and 
malicious emails (Microsoft Security, 2022). 
 
Despite the availability of cybersecurity training and ongoing cyberdefense efforts, there remains a significant gap in 
the labor market's ability to meet the growing demand for skilled cybersecurity professionals. According to the U.S. 
Bureau of Labor Statistics, cyber-related job openings are expected to rise significantly in the coming decade, yet 
recruitment challenges and training bottlenecks persist (Bureau of Labor Statistics, 2022). This shortfall is evident in 
various government departments, including the U.S. Department of Homeland Security, which reported over 2,000 
open cyber positions in 2021 (DHS, 2021). The 2018 Department of Defense Cyber Strategy emphasizes the 
importance of developing a diverse and adaptable cyber workforce to maintain national security in cyberspace 
(DoD, 2018). 
 
To address these challenges, this paper introduces an innovative cybersecurity simulation platform, designed in 
accordance with the National Institute of Standards and Technology (NIST) standards (NIST, 2023) and OpenAI 
and Farama's Gymnasium framework (OpenAI, 2023). This platform aims to facilitate the training and evaluation of 
both automated and human cyber attackers, providing a realistic, scalable, and controlled environment for 
conducting synthetic cybersecurity operations. The simulation enables the development of machine learning cyber 
agents that can act as automated offensive forces (OPFOR), thereby reducing the financial and temporal costs 
associated with cybersecurity workforce development. The agents and digital replicas created within this simulation 
can emulate advanced threats like red teamers, smart botnets, IoT devices, and swarms, offering a comprehensive 
and realistic training ground for cyber defenders and researchers. The remainder of this paper will delve into the 
state of the art in cybersecurity simulations, the necessity for automated cyber OPFOR, the architecture of the 
proposed simulation, and an example Monte Carlo experiment conducted using this cyber assessment platform. 
 
BACKGROUND 
 
A simulation is a replica of an actual process or system, and cyber simulation environments ensure the acceleration of 
cybersecurity training through computer-based models to replicate the behavior of cyber systems, networks, and 
scenarios. These simulations can be classified as live, virtual, and constructive (DoD, 1989) and allow participants to 
train and work together geographically, independent of each other. As displayed in Figure 1, participants interact with 
virtual or real objects provided by integrating different systems, which enables training multi-domain operations. 
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Figure 1. General Live, Virtual, and Constructive (LVC) simulations each have different fidelities and 
characteristics. Cybersecurity LVCs differ in realism, resource intensity, and user interaction 

A live simulation is a reproduction of a physical system, event, or process, usually used for training, analysis, or 
prediction purposes. For example, military, vehicle, device operations, aviation agencies, air traffic control, and first 
responders use live simulation to conduct physical operations based on domain-specific scenarios. The simulation 
uses data and models to reproduce the behavior of the actual system, allowing users to make decisions and see the 
results in real-time interactively (Kavak et al., 2016). Real-Time Immersive Network Simulation Environment 
(RINSE) is a live simulation that supports large-scale wide-area networks (WAN) consisting of local-area networks 
(LAN). In the simulation, a user administrates a LAN and can use five categories of commands: Attack, Defense, 
Diagnostic Network Tools, Device Control, and Simulator Data. In contrast to virtual and constructive simulators, 
attacks in this live simulation are not executed by a script but by a human game manager. The game manager makes 
the simulation in a certain way adaptive since the game manager can freely design the attacks, but it does not save any 
training costs if an instructor has to be on-site at all times. In addition, the game manager is limited by the types of 
attacks since, even in this simulation, the attacks are limited to DoS, worm, or similar large-scale attacks (Liljenstam 
et al., 2005). 
 
Virtual simulation is a computer-based simulation that uses computer graphics and other virtual reality technologies 
to represent real systems. The virtual environment represents motion, individual objects, or the entirety of a system. 
This type of simulation is used primarily in military training, process control, or architecture to test, evaluate, and 
make design and operational decisions about systems. With current technology, virtual simulations create highly 
realistic and interactive environments and provide users with an immersive experience (Kavak et al., 2016). An 
example of a virtual cyber simulation is NetENGINE, which simulates simultaneous, multiple users and computers 
interacting on large IP networks. The software is accessible via the internet using any web browser and focuses on the 
effects of a cyberattack rather than the technical details, which is another difference. The generic cyber-attacks are 
launched from a predefined master script and cannot be modified during the simulation. The simulated attack catalog 
includes distributed denial of service (DDoS) attacks, worms, and viruses (Brown et al., 2003). 
 
Constructive simulations use mathematical models and algorithms to represent the behavior of real physical systems 
and processes. This simulation predicts a given system's behavior under certain circumstances and analyzes, tests, and 
evaluates systems. Real people make inputs in the simulated environment without being able to influence the output 
(Kavak et al., 2016). One example of a constructive cybersecurity simulation is SECUSIM. SECUSIM aims to specify 
attack mechanisms, verify defense mechanisms, and evaluate their consequences. The simulator creates virtual 
computer networks for its users, and its software has five modes: Basic, Intermediate, Advanced, Professional, and 
Application. The different modes allow various users to simulate their networks against cyber-attacks. These attacks 
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are stored in a scenario database and can be selected for each run, but do not change according to current events, let 
alone adapt to a different network configuration (Park et al., 2001). 
 
In addition, to strictly live, virtual, and constructive simulations, hybrids and cross-over cyber simulations also exist. 
With StealthNet, the developers have taken a big step forward in developing cyber simulations. StealtNet is a live 
virtual, constructive simulation with real network hardware, such as routers, and virtual/constructive elements that 
attack the network hardware and exploit vulnerabilities. In contrast to previous simulations, integrating virtual and 
physical elements creates a realistic and immersive training experience. However, even in this simulation, a natural 
person must select and launch the attacks from a library. Although the library has a wide range of attacks with which 
the attacker can launch accurate cyberattacks, these are again fixed and need to be updated manually to reflect current 
events. Even this simulation is still far from an adaptive simulation with intelligent machine learning agents, 
contributing to cost reduction and quality improvement of cybersecurity training (Varshney et al., 2011). 
Another development step in cybersecurity simulation is the introduction of cognitive agents as defenders. Cyber 
Security Instruction Environment (CYSTINE) is a virtual training system that develops these defenders for 
penetration tests. Because there are multiple acceptable paths for penetrating a network, a limited set of expected 
response actions and attributes and the time window within which these actions should occur are defined. In contrast 
to the other simulations presented here, CYSTINE does not simulate an attack on a network but is the defense to 
teach students penetration tests. Using a cognitive agent presents an active defense of the network. Cybersecurity 
students can use this simulation and the adaptive agent to constantly improve their skills in an authentic, changing 
scenario in a small area, increasing the quality of education. Unfortunately, the agent's range of action is too small to 
provide comprehensive, adaptive training in cybersecurity (Nicholson et al., 2016). 
 
A similar live-virtual-constructive simulation to StealthNet is Cy-Through. Cy-Through combines the advantages of 
StealthNet, the realistic simulation with attacks on physical and virtual objects, and CYSTINE by using an agent to 
represent a variety of existing or potential cyber threats. The architecture of the Cy-Through platform is divided into 
two areas: constructive and live/virtual simulation. The constructive simulation is a Discrete Event Simulation (DES) 
environment that creates over 250 cyber threat scenarios, which trigger a specific threat effect. The Cy-Through agent 
is the virtual part of the platform and diversifies the cyber threats. The agent downloads the payload that contains a 
predefined attack script. Once triggered by the agent, the script automatically executes predefined malicious behaviors. 
Even though the Cy-Through Platform speaks of an agent, it can only be called intelligent to a limited extent since it 
simulates attacks or threats with the help of a script should certain events take effect (Lee et al., 2021). 
 
The aforementioned existing simulations have been designed for their respective purposes and allow users to test their 
network configuration with the help of ready-made and predefined attack patterns. However, the use of machine 
learning cyber agents is a growing concept, and when used, such as in CYSTINE, these agents are used as defenders, 
not as attackers. Therefore, there is a need to extend AI cyber agents to take on the role of an attacker to increase 
training opposition for cyber workforce development and training. The solution proposed in this paper explicitly 
provides a training platform for current and future machine learning agents. Additionally, the simulator is designed to 
train single- and multi-agent cyber-defending and attacking systems. This novel approach makes cybersecurity 
training more multifaceted and realistic. 
 
METHODOLOGY 
 
This work introduces CyberSim, a continuous multi-agent simulation that provides a constructive cyber security 
simulation environment for developing intelligent, automated agents. CyberSim is designed to aid researchers and 
cybersecurity experts in testing their developed countermeasures in a secure environment. Additionally, the simulator 
provides a platform for developing and evaluating automated agents and adaptable attack scenarios to improve the 
quality of cybersecurity education to meet the increasing demand for and reduce the cost of cyber personnel. The 
open-source simulator is designed to address many of the shortcomings of cybersecurity simulations, focusing on fast, 
multithreaded, and scalable execution, creating a platform to generate automated cyber forces, simulating realistic 
cyber threats, and providing an extensible constructive environment that can be customized to the researcher and cyber 
analysts' needs. The remainder of this section defines the technical details of the simulator and how it is a tool that can 
be used to drive cyber workforce training. 
 
Simulator Architecture 
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CyberSim is a constructive simulation that implements a simulation heartbeat model, where every agent has an 
opportunity to evaluate its state and environment and make one decision per time step (one simulation millisecond). 
CyberSim consists of two components: the core network simulator and its collection of independent decision-making 
agents. This modular structure allows researchers to develop and implement automated agents who can learn from the 
simulated environment and evaluate different network configurations and properties, such as the presence of 
vulnerabilities, internet of things (IoT) devices, and communication routes. Figure 2 (a) contains a class diagram of 
the simulator and (b) the default Agent class. In these two classes, the attributes and functions of each component are 
outlined and later defined in this section. 
 
CyberSim has a continuous architecture in which each 
time step advances the simulator's virtual network and the 
agents within. The simulator relies on two look-up tables 
to process agent requests and direct network traffic: 1) 
network table (Table 1) and 2) action table (Table 2, 
Table 3). The network look-up table allows the simulator 
to create a virtual network consisting of various devices 
and routes. The simulator's user defines this network 
table's configuration before the start of a simulation, 
where each device in the table has an IP address, open 
ports, installed applications that use those ports, and 
possible vulnerabilities. At the simulator's initialization, 
the number of devices, ports, services, and vulnerabilities 
are established to allow for individual network 
customization for the user. The action look-up table 
defines which commands the offensive (OPFOR), and 
defensive (BLUFOR) sides of agents can perform on the 
network. Here, the OPFOR tries to discover network 
devices and their vulnerabilities by executing specific 
sequences of commands; each successfully executed command will reveal information about the network or enable 
vulnerabilities to exploit compromised devices. For example, an OPFOR agent must ping an IP to determine if the 
address is available on the network before attempting to execute a vulnerability on the IP and port. To encourage the 
correct execution of actions, each action (command) has a delay for success and failure attempts, and the information 
is returned to the requesting agent. For instance, ping commands return responses to the OPFOR agent significantly 
faster than a port scan, so the agent is encouraged to ping for IP discovery before scanning for available ports on 
undiscovered IPs. The BLUFOR side simulates network admins, and their commands provide the state of each 
network device and allow BLUFOR to modify the network to protect it from OPFOR exploits. The action look-up 
table defines which commands are available to both sides of actors, which information is returned when a command 
is successfully executed, and the time delays it takes for an action to be returned to the agent. Significantly, these look-
up tables speed up simulator execution by minimizing network and action searches to near immediate time because 
they are implemented with table hashing.  
 
Table 1. Network look-up table that contains the properties of each device on the network 

IP Port Service Vulnerability 
192.168.0.2 - ping - 
192.168.0.2 22 ssh password crack 
192.168.0.2 43 whois - 
192.168.0.2 80 apache sql injection 
192.168.0.2 443 apache sql injection 
192.168.0.3 3306 mysql default password 

 
In particular, the network look-up table is indexed (hashed) at the IP address for each device, allowing for instant 
retrieval of device information. Because of this indexing, retrievals are at an asymptotic runtime of O(1) to access all 
device information for a particular network device and O(1) for table updates. Action executions use the same indexing 

Figure 2. Class diagram of CyberSim that (a) defines 
the simulator’s structure and (b) defines each 
simulated agent’s attributes and functions 
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on action types so the simulator can instantly retrieve action information. Lastly, the simulator has an action log that 
records all actions performed by all agents and the list of discovered vulnerabilities is defined. The action log contains 
the time step, the agent's IP address, the action, and the target IP, port, service, and vulnerabilities. This log is used for 
after-action review (AAR) of all simulated activities, agent performances, and discovered vulnerabilities. 
 
The simulator validates submitted actions at each simulation step before processing its commands. This validation 
process uses both the network look-up table and the action table to first determine if the agent has permission to 
execute the action, has supplied the required parameters, and if the target of the action is present on the network. 
The tables restrict the agents' ability to act, which is imperative to ensure realistic action. According to the pre-
configured tables, the agent receives a reward when successfully discovering a vulnerability. 
The action table specifies which information the agent must provide in its action in order to carry it out successfully. 
The simulator compares the agent's incoming command with the action table and sends an appropriate response. Next, 
the responses to the actions of the BLUFOR and the OPFOR agent are determined. These are explained in more detail 
in the agent class section. 
 
Each agent contains properties necessary for it to operate in the simulation. First, each agent has a unique network IP 
address. The IP address simulates the attack's origin in the case of the OPFOR agent and the administrator's computer, 
from which he takes protective measures in the case of the BLUFOR agent. Secondly, the agent's side defines whether 
the agent is an attacker (Red) or on the defender team (Blue). Thirdly, a cool-down timer is defined, which is 
responsible for limiting the agent so it cannot carry out an action in each time step but must wait for a response from 
the system after the network command. In machine learning cases, agents also have a reward, which counts how many 
vulnerabilities the Red agent has discovered and exploited. Next, every agent has a log that lists all the actions 
performed by the agents during the simulation. This log is for optimization and debugging purposes, especially for 
machine learning. Lastly, the agent has a blackboard. The blackboard is a list of all action results and messages an 
agent has received from other agents. The blackboard acts as the agent's primary method to collect information and 
understand the state of the environment as a result of executing actions. Afterward, the agent is initialized with the 
corresponding team and the IP address to act in each time step and write it to the blackboard log file. The actions in 
the step function are the possible actions from which the agent can choose. Each action acts with a specific component 
in the network and may differ between OPFOR and BLUFOR agents. 
 
Actions 
 
The OPFOR agent has six actions: ping, port scan, netstat, password crack, SQL injection, and default password. The 
ping action executes the ping command to determine if an IP is available on the network. By default, this command 
returns the fastest response of all other actions because it should be the first action an agent performs to discover 
devices on the network. The second action is port scan, which determines if a port is open at an IP address. This action 
requires an IP address and a defined port from the agent to perform. The IP address is necessary so the OPFOR agent 
can follow a realistic attack graph and not search directly for a vulnerability. The port is necessary to ensure a targeted 
search by the agent. The netstat action identifies a service running at an IP address and on a specified port. Finally, 
the password crack, SQL injection, and default password actions are used by a Red agent to exploit a vulnerability. 
Each attack action requires an IP address, a port, and a service. 
 
The BLUFOR agent can perform the same actions as the OPFOR agent to test the network's security and has four 
other actions available to facilitate its administrator role. The first additional action is remove service, which removes 
a service from the target computer. The add service adds a service to the target computer, such as running a database 
on port 443 or a new webserver on port 80. Additionally, this action can introduce vulnerabilities to those services or 
add patched services to the network. Second, the action log queries a network device for its entire action log to allow 
the BLUFOR agent to know what actions have been performed on the device so far in the simulation; this action 
allows the blue agent to take action accordingly to protect the network from current threats. Third, the network table 
action gives the agent insight into the current status of the network. The response displays all IP addresses, open ports, 
running services, and weak points in the network. This action also has no prerequisites. Lastly, all agents can 
communicate with others by using the send message action. This functionality places messages on a target's 
blackboard to share information and is particularly useful when multiple BLUFOR agents are simultaneously 
defending the network, or multiple OPFOR are collaborating to discover weaknesses on the network. 
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When executed, each of the above actions has a delay. Each agent must wait for this delay to execute a new action. 
The delay varies but is limited to a configurable minimum and maximum delay specified in the action look-up table. 
When an action is executed, the simulator randomly chooses a relay between this range and will only place the action's 
response on the agent's blackboard once that delay has elapsed. Furthermore, each action has a fixed timeout value. 
This value punishes an agent if it repeatedly performs an invalid action or incorrect commands. 
 
Table 2. Part 1 of 2 of the action look-up table displays several of the actions the OPFOR agent can perform. 

Action Red Blue Success Probability Delay Minimum Delay Maximum Timeout 
ping True True 0.95 5 80 4000 

port scan True True 0.95 50 100 10000 
netstat True True 0.95 100 150 20000 

password crack True True 0.001 25 50 100000 
sql injection True True 1 10 30 100000 

 

Table 3. Part 2 of 2 of the action look-up table 

Action Require 
Port 

Require 
Service 

Require 
Vulnerability 

Require 
Misc 

Return 
IP 

Return 
Port 

Return 
Service 

Return 
Vulnerability 

ping False False False False True False False False 
port scan True False False False True True False False 

netstat True False False False True True True False 
password 

crack 
True False True False True True True True 

sql 
injection 

True False True False True True True True 

 
Table 4 Description of the captured metrics 

Metric Description 
Successful Unique Actions Using Successful Unique Actions, all successful actions 

of the agent are captured and recorded. 
All Detected Vulnerabilities The metric captures the number of all vulnerabilities 

identified and exploited. 
Unique Detected Vulnerabilities Unique Detected Vulnerabilities are used to detect only 

vulnerabilities that have been identified and exploited 
for the first time. 

Active Vulnerabilities The metric indicates the number of all active 
vulnerabilities according to the network look-up table. 

All Active Detected Vulnerabilities The metric captures, across all time steps, the 
vulnerabilities detected and exploited. 

Unique Active Detected Vulnerabilities Unique Active Detected Vulnerabilities are used to 
capture only active vulnerabilities that have not yet 
been closed by the BLUFOR agent and have been 
identified and exploited for the first time. 

 
Metrics 
 
CyberSim collects five metrics to evaluate the success of the OPFOR agent. The first metric is the number of unique 
successful actions. This value is recorded to ensure that the OPFOR agent does not repeatedly perform the same action 
to get a reward. Ideally, the agent's goal is to get all the information on the network table. The agent must discover 
different IP addresses, ports, services, and vulnerabilities to achieve this goal. Therefore, it is not beneficial if the 
agent constantly examines only one IP address for vulnerabilities. The second metric is the number of vulnerabilities 
discovered. This value determines how often the agent penetrates the target and discovers a vulnerability. Similar to 
capturing unique actions, the number of unique vulnerabilities discovered is a metric that serves as a tool for the agent 
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to find as many vulnerabilities in the system as possible. Furthermore, with the help of this value, it is possible to 
recognize whether the BLUFOR agent has opened other services with vulnerabilities or closed existing ones. 
The OPFOR Agent has to react to the changing situation and try to find and exploit the new vulnerabilities. The last 
metric is the number of active vulnerabilities, which can change due to the actions of the BLUFOR agent. The 
information from this metric is compared with the OPFOR agent's activity log. This checks whether it has found all 
vulnerabilities. 
 
Automated Agent Generation 
 
CyberSim follows the OpenAI Gym, Farama Gymnasium, and PettingZoo (Terry et al., 2021) standards to support 
the development of automated agents using reinforcement learning. In the simulator, agents interact with the 
constructive environment and receive a positive or negative reward for each action performed. Based on the agents' 
and environment's states, each agent adjusts its actions and tries to maximize the total value of the reward. CyberSim 
makes this possible by rewarding both OPFOR and BLUFOR agents for actions taken. For example, the OPFOR agent 
receives small positive rewards when discovering an IP address or port. However, the agent receives a much larger 
reward should it identify and exploit a vulnerability. The BLUFOR agent, on the other hand, receives small rewards 
for changing the layout of the network and a large reward for closing an exploited vulnerability. Through these two 
measures, the agents will always try to find new ways to maximize the reward. Finally, metrics used for the rewards, 
action characteristics, network configuration, and action delays are all configurable in the simulation without needing 
to modify the code. This flexibility allows developers to craft different types of agents, experiment with various 
network configurations, and explore new machine learning approaches in cybersecurity. 
 
RESULTS 
 
A Monte Carlo simulation was performed to demonstrate CyberSim's functionality. In the demonstration, the 
simulation has the goal of the red OPFOR agents to discover all of the predefined security vulnerabilities on the 
network and exploit them. This example refrains from training ML agents but uses agents randomly selecting their 
limited actions to simulate agent decision-making. This decision was made because this work focuses on developing 
the environment for the future use of machine learning and agent training. 
 
In the demonstration, the two red agents are given a set of IP addresses, ports, services, and vulnerabilities to 
simulate. Each agent has a set of actions to select from to discover the network configurations mentioned above. The 
same set of actions and the network configuration are defined in Tables 1-3 in the Methodology section. Once the 
simulation begins, each agent uses those actions to obtain feedback about the given network configuration, receiving 
positive feedback for each successful unique action performed on a unique target, unique vulnerabilities detected, 
and unique exploits executed. To observe the agent's progress, the action logs containing the metrics are output 
periodically and evaluated in an AAR. 
 
Though displaying all network activity to the user in real-time slows down the simulation, this level of reporting can 
be beneficial in understanding the agent behavior as the simulator is running. This experimental setup was repeated 
1,000 times, with each run executed for 10,000 time steps to obtain observable results and validate the simulation. It 
can be seen that the agent is constantly successfully performing actions to exploit the vulnerabilities. On average, the 
agent performs 151, a minimum of 125, and a maximum of 175 successful actions. This result verifies the 
functionality of the simulation environment. The results can be seen in Figure 3. All detected and active detected 
vulnerabilities and unique detected, and unique active detected vulnerabilities are identical due to the lack of 
changes in the network configuration by a BLUFOR agent. Therefore, they have been combined in Figure 4. Within 
10,000 time steps, the agent finds several vulnerabilities twice, which was to be expected due to the chosen network 
configuration and Monte Carlo simulation. On average, the agent found 5.44 vulnerabilities at the end of the 
simulation, while only four unique ones were specified in the network configuration. However, the agent could not 
identify all unique vulnerabilities in every episode, which is the limitation of the maximum timestep of the 
simulation and the action-target permutation. On average, the agent only exploited 3.6 unique vulnerabilities; in a 
few runs, the agent only managed to find one. Though these experiments are not designed to develop machine 
learning agents, uses static agent-behaviors, and are executed for a relatively short simulation duration, the simulator 
has been evaluated to simulate over 24 hours of network activity in other experiments. The 10,000 timesteps 
simulator limit was chosen to examine the network's processing of actions, evaluate agents that continuously 
monitor their states and the environment, and agents that saturate the simulation with actions. Under the 10,000  
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timestep condition described in these demonstration results and extended stress-test conditions, the simulator has not 
displayed any performance issues and demonstrated to be scalable with an increased number of agents, actions, and 
network devices. 
 
DISCUSSION 
 
From the described CyberSim architecture and test results, the simulator is robust, scalable, and efficient. The 
simulator is robust because it is highly configurable with little-to-no-code changes to its architecture and agent 
behaviors. It is scalable because it can support an increased number of agents, network devices, and actions. Further, 
it efficiently uses indexed look-up tables for the agent, action, and device retrievals and updates. Nevertheless, 
limitations, challenges, and assumptions have been made in this simulation version to test the environment 
sufficiently. In this work, the agents used Monte Carlo-based action selection to discover exploits on the network; 
this omission of machine learning agents is because this work focuses on defining the simulator and its capabilities 
as a platform for agent development. Therefore, a generic Monte Carlo simulation was used for testing and 
demonstrating the simulator's capability. However, future iterations will explore the use of state-of-the-art machine 

Figure 3. The average number of successful unique actions performed by two OPFOR agents in 
the Monte Carlo simulation 

Figure 4. The average number of all detected and unique detected vulnerabilities by two OPFOR 
agents in the Monte Carlo simulation 
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learning approaches, such as Deep Q-learning Networks (DQN) and Proximal Policy Optimization (PPO) (Starken, 
2022) (Mondesire, 2023).  
 
The presented results show that OPFOR agents select permissible actions according to the action table to identify the 
given network configuration and vulnerabilities. The results also show that the agent identifies all vulnerabilities 
through the Monte Carlo simulation. This capability supports machine learning agent training in this environment 
with fast action validation, environment updates, and a reward system that can steer agents to explore attack plans 
and adapt to dynamic network environments. Through this result, CyberSim offers the possibility to simplify the 
design and development of cybersecurity courses by offering an environment where trainees can take the place of 
these automated agents and interact with the synthetic network. Additionally, automated, adaptive agents can be 
trained to fill the human OPFOR or BLUFOR role and provide an adversary to train against, improving convenience 
and reducing training costs. For these reasons, explicit care was taken to develop the architecture in an open-source 
language and environment. By this measure, CyberSim meets the high demand for cyber defense software and 
services for human resources development and training opportunities (Geluvaraj et al., 2018) (Karagiannis & 
Magkos, 2020). 
 
CONCLUSION 
 
The development and deployment of CyberSim mark a significant step forward in automated cybersecurity training 
and preparedness. The need for such a simulation platform is underscored by the rapidly evolving landscape of cyber 
threats, where traditional training methods are no longer sufficient. CyberSim's ability to create realistic, dynamic 
network environments and simulate sophisticated cyber-attacks offers a cutting-edge tool for both current and future 
cybersecurity professionals. It provides a safe, controlled environment for practicing defensive strategies against a 
range of cyber threats, thereby enhancing the readiness and skills of cybersecurity personnel. 
 
The potential of CyberSim extends to its application in developing digital twins of Cyber OPFOR and dynamic 
networks (Schiller, 2023). CyberSim enables a more profound understanding of potential vulnerabilities and defensive 
mechanisms by mirroring real-world network configurations and threats (Schiller, 2023). This aspect is crucial for 
future cybersecurity strategies, as it allows for anticipating and mitigating threats in a controlled setting before they 
impact real systems (Schiller and Mondesire, 2023) (Dauble and Mondesire, 2023). Digital twins in CyberSim 
represent an advanced approach to cybersecurity training, offering a realistic and comprehensive platform for 
understanding and responding to emerging cyber threats. This realistic approach is inspired by digital twin simulators 
in manufacturing domains and continues the innovation of providing AI-capable synthetic environments and analyses 
(Tse et al., 2024; Wright et al., 2024; Nsiye et al., 2024). 
 
The extension of machine learning implementations in CyberSim will further enhance its automation and adaptability 
to model and detect cybersecurity vulnerabilities, as evidenced by the Monte Carlo results of the conducted 
experiments. The simulation's ability to process dynamic network environments, threat-actor models, and a catalog of 
NIST vulnerabilities and attack vectors make the platform capable of supporting a wide range of automated Cyber 
scenarios. Additionally, these characteristics with machine learning agents ensure that CyberSim stays relevant in the 
face of evolving cyber threats and makes it an invaluable tool for training cyber defenders. By modeling human-
designed networks in the simulator, CyberSim provides critical feedback, aiding defenders in refining network designs 
and bolstering security measures. CyberSim emerges as a pivotal tool in the continuous effort to fortify cyber defenses 
against increasingly sophisticated threats. 
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