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ABSTRACT 

 

With advancements in automation technologies in manufacturing industries, there is an increasing demand for real-

time analytics to aid in performance prediction, production scheduling, and capacity planning. By combining 

machine learning and automation, Digital Twin models are used for real-time monitoring and optimization of a 

system. In manufacturing, Digital Twins are the digital representations of the manufacturing plant, connected with 

real-time data from its physical counterpart. The insights generated by the Digital Twin aid in long-term production 

analyses and optimized systems planning, such as capacity and maintenance. Capacity, referring to the amount of 

product that can be produced within a given timeframe, is a challenging metric to capture in complex manufacturing 
systems accurately. The Digital Twin can address this issue by using machine learning to predict capacity, allowing 

manufacturers to assess efficiency and prevent machine failure.    

  

This paper introduces a micro-discrete event simulation model that facilitates batch tracking and optimization of job 

scheduling within a manufacturing facility for capacity planning. The simulation is built upon the OpenAI and 

Farama Gymnasium framework, combining agent-based modeling and reinforcement learning to effectively 

schedule product batches by considering equipment availability, downtime, timing constraints, and production yield. 

With its lightweight and scalable architecture, the simulation is compatible with the real-time connectivity 

requirement of the Digital Twin model and its ability to evaluate different manufacturing scenarios. By integrating 

machine learning with the simulation, the simulation parameters can be optimized to meet specific manufacturing 

capacity planning goals.  
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INTRODUCTION 

 

In recent years, the manufacturing industry has shifted towards the adoption of digital twin technologies, driven by its 

ability to simulate operations and systems to facilitate the development of dynamic solutions.  These capabilities are 

attributed to the extensive connectivity features of digital twins, allowing seamless integration with specialized 

software. This integration ensures efficient functionality of manufacturing operations by tracking and documenting 

production processes and materials, incorporating data from physical manufacturing operations. Furthermore, the 

digital twins' ability to simulate real-world systems offers valuable insights to manufacturers by pinpointing 

bottlenecks and optimizing productivity [Hill, 2022].  The combination of full connectivity and simulation facilitates 

capacity planning, predictive maintenance, system optimization, and remote monitoring, contributing to improved and 

proactive management within manufacturing facilities.  

  

Recent innovations in manufacturing attributed to digital twin technologies are exemplified by the BMW iFactory. 

The BMW automotive factory, developed with Nvidia Omniverse, a platform that allows for the development of 3D 

tools and applications, provides real-time simulations of the entire automotive plant [Diaz and Jesus, 2023]. This 

advancement allows plant managers to assess manufacturing processes, closely monitor key performance indicators 

(KPIs), identify potential issues, and seamlessly integrate artificial intelligence for real-world optimization. With the 

advent of a digital twin, BMW's process engineers can simulate different scenarios to test for bugs in the plant design. 

Another use of digital twin technology for manufacturing is in the power industry, where implementing digital twins 

helps maintain power generation equipment, monitor the overall system, and avoid system failure or external damage 

[Huang and Jianping, 2021].     

  

The deployment of a digital twin's extensive capabilities can uncover solutions to solving one of the manufacturing 

industry’s most impactful challenges: production scheduling. Production scheduling is planning when various tasks 

get executed in the manufacturing process. When scheduling production, task allocation and resource allocation must 

be considered. Task allocation determines how duties are assigned to different equipment or operators to produce a 

product. Resource allocation determines what finite materials are used at each step of manufacturing, which further 

restricts the flow. Together, they help determine the flow of the manufacturing process, the most efficient operational 

sequences and equipment usages, and when and by whom limited resources are used.      

  

Production scheduling can be categorized as a stochastic scheduling problem that involves unpredictable 

characteristics, such as varying processing times, diverse due dates, and the potential for conflicting demands. This 

scheduling can occur on either a short-term or long-term basis, presenting challenges like random weights, dynamic 

environments, and the occurrence of machine breakdowns that may impede or disrupt processing. One approach for 

production scheduling is leveraging discrete event simulations, a technique designed to replicate the actions and 
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efficiencies of actual processes within a simulated environment as chronological events that occur in intervals [Allen 

et al, 2015]. Several solutions utilizing discrete event simulation to handle production scheduling are available; 

however, production scheduling solutions require dynamism and adaptability; and rely on data to deal with changing 

market demands and various products.      

  

This work proposes a new simulation that allows customization and execution of manufacturing operations based on 

user input guidelines. The simulation factors include operational timings, yield probabilities, equipment capabilities, 

state transitions, order arrivals, fabrication sequences, deadlines, and priorities, opening the door to developing 

heuristic or Artificial Intelligence optimization to find optimal operations and procedures. The approach uses micro-

discrete event simulations built upon the OpenAI and Farama Gymnasium framework (Brockman et al, 2015). The 

use of Gymnasium will allow combining agent-based modeling and reinforcement learning to iterate through the 

fabrication process of all product orders and equipment status changes typical of a generalized product.  The 

simulator's output is the number of products produced (throughput), equipment assignments (job schedule), timings 

of each product during its fabrication lifespan, and the amount of time each product spent in idle and in-production 

states. Based on the simulation’s customizable job scheduling scheme and the product scheduling protocol, users are 

able to determine the fabrication capacity of a production operation. Lastly, the simulation is built to be adaptable to 

live updates from a manufacturing execution system so digital twins can update themselves with the latest operational 

data and alerts can be inserted to notify when production thresholds and schedules fall out of expected ranges. 

 

BACKGROUND 

 

Historically, attempts to address production scheduling through non-simulation approaches, such as programming, 

have led some researchers to define the task as NP-hard complex. In other words, once an efficient schedule is 

produced, solving for subsequent job schedules is reduced to polynomial time (Awad and Abd-Elaziz, 2021). It is 

imperative to devise a strategy for optimizing the duration required to generate the initial job schedule, aiming to 

reduce the time taken for scheduling subsequently. Long-term planning for task allocation is challenging in most 

manufacturing processes, and a constantly changing environment exacerbates the difficulty of this task. While existing 

research has attempted to address this problem using multiple optimization algorithms under more straightforward 

scenarios, these approaches do not consider dynamically changing conditions of equipment failures, production 

uncertainties, or realistic tasks (Ko, Chang, Lee and Kim, 2023). For example, regarding production scheduling, an 

issue arises when a product stays in queue for a step longer than scheduled (Chuang et al, 2023). A proposed solution 

to this problem uses integer programming, a mathematical model acting as an objective function that seeks to 

minimize the length of the queue time violation based on differences in process time (Chuang et al, 2023). However, 

it is important to note that this approach, while addressing certain aspects of the problem, does not fully account for 

the complexities introduced by equipment failures and their potential impact on job scheduling. 

 

One thing that is overlooked by the mathematical and programming solutions presented is the dynamism inherent in 

manufacturing. Resource allocation is profoundly influenced by the constantly changing nature of a live 

manufacturing process, with different jobs requiring varying amounts of resources at different production times. For 

instance, a common problem in general fabrication is the adherence to a fabrication sequence for each product to 

ensure successful production. A product represents an unfinished object that must go through a predefined series of 

operations performed by specific equipment. Products are grouped into batches, where each batch is assigned a piece 

of equipment to execute the corresponding process on every product in the batch. Each piece of equipment can perform 

operations according to the fabrication sequence. The challenge arises when scheduling batches to equipment during 

facility operation, as multiple batches may require simultaneous access to a piece of equipment, leading to the dilemma 

of determining which batch should be assigned when conflicts arise.  A proposed solution to this challenge involves 

scheduling based on the efficiency of jobs rather than completion time, ensuring the efficient use of resources (Hu and 

Li, 2023). Another solution leverages the densest job set first (DJSF) method, which schedules jobs based on which 

job has the highest job completion efficiency or density. Before job scheduling, the jobs are packed into sets using an 

alignment technique such that jobs with similar job completion times (JCT) are in the same group through the k-means 

clustering algorithm. As the number of parallel jobs within the groups increases, jobs with the highest job completion 

efficiency will be scheduled with higher priority. The simulated DJSF scheduling method effectively reduces JCT by 

maximizing the number of completed jobs per unit of time. Among solutions for scheduling and resource allocation, 

some have investigated incorporating machine learning combined with statistical analysis to aid in job scheduling.  A 

noteworthy case is in long-term capacity planning, where machine learning is integrated with optimizing equipment 

capabilities (Ko et al, 2023). In this work, three algorithms were proposed: one to balance the workload of all 
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workstations used in fabrication processes, another to estimate the machine count needed to accomplish all tasks, and 

a third one that combines the first and second algorithms to optimize the balance of workload by freeing up unneeded 

machines. 

 

With manufacturing systems producing large amounts of data from different sources, this data serves as a valuable 

tool that provides insights to enhance the scheduling process and address the dynamism of manufacturing. The 

Manufacturing Execution System (MES) is software used to monitor, manage, and record manufacturing processes.  

Its utilization has given rise to solutions that focus on integrating the continuous stream of data to solve scheduling 

challenges. One way to achieve this integration is through simulation, where simulations can be run repeatedly as new 

information becomes available by implementing an information exchange system between the simulation and the 

MES. These simulations can be customized based on parameters defined by the user, such as production costs (Kuck 

et al, 2016). Customization of simulations can also focus on processing times, with the implementation of generic 

algorithms such as shortest processing time (SPT) (Wang et al, 2022). In this application, the SPT algorithm is applied 

following the completion of the first processing step, with three rules to follow: if there is a lone idle parallel machine 

and the only workpiece in the waiting queue is newly arrived, the workpiece promptly undergoes processing by 

entering the idle machine; if there are multiple idle machines on the parallel machine system and only one workpiece 

has recently joined the waiting queue, the machine will process the workpiece with the shortest processing time among 

the available idle machines; in the absence of an available idle parallel machine, the workpiece must wait in the 

temporary storage area. Once an idle machine becomes available, it will select the workpiece with the shortest 

processing time from the temporary storage area for further processing.  

   

Furthermore, the MES data stream enables the creation of digital twin-based simulations, ensuring rapid, precise, and 

comprehensive information presentation, coupled with a high degree of flexibility to accommodate the intricacies of 

multi-variety production lines, varying batch sizes, and diverse product models (Shan et al, 2023). The rationale for 

digital twin-based simulation lies in its ability to provide swift responses to workshop reconstruction scheduling plans 

and promptly restructure the production line model. This ensures the absence of conflicts between the reconfigured 

virtual workshop and the segments undergoing simulation, all made possible by running parallel workstations and 

resource flow simulations.    

 

Most of the simulations presented above are continuous simulations as they rely on continuous changes in behavior. 

However, there is another type of simulation called discrete event simulation (DES), which is built on modeling events 

sequentially and occurring at a given expected time. A primary benefit of DES lies in its capacity to conduct 

experiments that may be impractical or impossible in actual manufacturing systems. Developing a simulation model 

contributes to acquiring insights that have the potential to enhance the natural system through gained knowledge 

(Sharma, 2015). Researchers have sought to apply DES with a digital twin model. In the resulting system, the 

simulation action depends on prior knowledge collected from the production. Any correlation between events is 

analyzed, and the logical impact between events and data is well understood to complete mastery (Li et al, 2022). The 

proposed system can provide forward-looking assessments and recommendations, continuously monitor real-time 

workshop production conditions, and analyze and forecast future operating conditions in the workshop caused by the 

creation of new events resulting from scheduling one event. Similarly, there has been an attempt to model production 

scheduling as a reinforcement learning environment built on integrating a Python-based Discrete Event Simulation 

library and OpenAI Gymnasium (Lang et al., 2021).    

 

Previous research has demonstrated multiple approaches to solving production scheduling, ranging from programming 

solutions built on mathematical models to continuous and discrete event simulation models built upon manufacturing 

data. This work introduces a new simulation– a micro-simulation environment that is small, lightweight, fast, and less 

complex while implementing principles inherent in discrete event simulations: system state, event list, simulation 

clock, and statistics (Law et al., 2015).    

    

METHODOLOGY 

 

The presented simulation environment implements the following components of discrete event simulation to build a 

digital twin model of all possible manufacturing factories successfully:    

• System State: The properties of the system, such as the number of equipment and their states and materials.    

• Event List: The production flows, such as new orders coming in, those orders being scheduled for production, 

and moving through the fabrication sequence.    
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• Statistical Counters: Track all possible production data, such as previous processing times and operational 

success probabilities.     

• Simulation Clock: Time hops to ensure the simulation will go from one event to another.  

The environment leverages reinforcement learning to enable the future integration of machine learning and 

probabilistic modeling for the fabrication process. This setup allows researchers to walk through an operation and 

measure capacity and throughput. In the rest of this section, the simulation design is presented along with its 

corresponding components, the look-up tables. An illustration of the execution of the simulation will be shown, 

accompanied by a runtime analysis, and how Machine Learning optimizes the simulated manufacturing environment.   

 

Simulation Implementation  

 

The simulation is built on the OpenAI Gym and Farama Gymnasium framework for agent-based modeling (Brockman 

et al, 2015). In this framework, the simulator mirrors the manufacturing operations environment. The environment is 

fully observable, such that the agent can directly observe its state. The agent deals with an action function that 

determines what batch processing will be the next discrete event after receiving the current batches and equipment 

status. To accomplish this, the policy that will be used is based on timestamp and due date; the batches will be sorted 

based on time and due date, and in ascending order. In the action function, the agent determines the next operation to 

perform, identifies the pieces of equipment capable of satisfying the operation, and decides if the job should be 

scheduled if the equipment is available. When a batch does not have an available piece of equipment because the 

equipment is at capacity while operating on other batches or the equipment is down for maintenance, the batch will 

be placed on standby and wait until equipment becomes available. 

     

Within the simulation, the agent executes a step to change the environment, in this case, a simulated manufacturing 

environment. Specifically, each simulation step is the processing of a discrete event, where the environment 

(manufacturing operations) will receive an action and apply it, operate the processing of a batch, scheduling it to a 

selected equipment, and simulating its processing by giving the expected output of the operation that is determined by 

stochastic weighted selection of past probability of success. In addition, the step function updates the system’s state 

by moving to the next operation and to the next timestep and by updating the equipment used to the following probable 

status for that equipment. The equipment status is determined by implementing a stochastic matrix that this work is 

calling transition matrix, a square matrix that depicts a Markov chain’s transition (Norris, 1998). After the batch is 

processed and the equipment status is changed, the simulation records the statistics produced by this event through a 

log file. It returns the new system state by emitting new observations for the actions (events) that are possible for the 

agent and the equipment status.   

 

Similarly, new batches of products can be introduced to simulate new, incoming orders. Additionally, batches may 

need to be split if only some of the products in the batch exited an operation successfully. The unsuccessful products 

will be placed into a new smaller batch, and the operation will be performed again. In contrast, the successful products 

will remain in their original batch and continue to their next operation. Lastly, the Gymnasium framework was selected 

because of the capability to integrate reinforcement learning to automate job scheduling decision-making easily. This 

form of machine learning will be explored in future work to optimize fabrication production sequences. 

 

Simulation Attributes  

  

To make the simulation realistic, all operational outcomes of the manufacturing process are based on historical results 

gathered from the physical plant, equipment, and products. Gathered data, such as the equipment status change history, 

equipment yield percentage for operation, and operation timings, are stored in the simulation’s Equipment History, 

Capability, and Operation Tables. Following the Gymnasium’s framework, the equipment and Batch tables represent 

the environment states. In addition, three lookup tables are created to keep track of the system, the events that will be 

processed, and the statistics of each event: the equipment, batch, and statistics look-up tables. Using these lookup 

tables, data lookups have reduced runtimes and made the simulator more time efficient, allowing the execution of 

more simulations in a shorter time. Below are descriptions of the five look-up tables:   

• Equipment Table: represents the state of the manufacturing operations or system state by containing live 

status information on each piece of equipment in the manufacturing plant. For each piece of equipment, 

information on whether the equipment is available or not, which batch is contained in the equipment, how 

many products of that batch are being produced, how long the equipment has been in that state, the expected 
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cycle time before completion of that step, and the following status of the batch after its operation is complete. 

The following batch status is based on the probability of the operation on that device being successful.    

• Capability Table: Contains information on which equipment can perform a batch need in its fabrication 

sequence. This table also defines operational timings and the probability of successful operations, all based 

on a history of gathered results.    

• Operation Table: Lists the fabrication sequence of each product. This listing contains the order of operations 

that must be executed and the capabilities required for a batch’s production.     

• Batch Table: The Batch Table represents the event list; it contains batch information of all the products 

currently manufactured in the manufacturing plant and the ones already being simulated. This collection of 

batch information contains the identifier of the batch, the fabrication sequence (operation table) the batch 

follows, the step of the sequence the batch is on, the current quantity of the batch, the status of the batch (if 

it is in Production or Stand By), the timestamp (the simulation clock), and the localization of the batch (The 

equipment it is assigned to).    

•  Equipment History Table: This look-up table contains equipment history and all the different transitions of 

equipment status. The table will be updated as the simulation progresses to make the simulation more realistic 

with new equipment status and information being added.   

• Statistics Table: A collection of statistics about the processing of each event (Scheduling of a batch). It will 

contain the Batch ID, the operation, the number of products, the time it took, and the yield of the operation. 

 

   
 

 

 

 

Those look-up tables are initialized at the initialization point of the simulation. Moreover, during the step function 

and to accomplish the change of the system state, the simulation makes use of helper functions to accomplish 

changes in the environment:    

• Equipment State Change: Implements the transition matrix to find the equipment's next state.    

• Logging: Function that tracks simulation event statistics for the equipment and the batches.     

• Equipment State Change: Function that is used to approximate the likeliest timing or yield based on the 

probability distribution for that specific operation.     

• Rework: Handle the creation of batch-rework.  

 

Figure 1. The simulation uses five data look-up tables to track manufacturing states and speed up 

simulation execution through indexing (hashing) and multi-indexing functionality. 
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Simulation Procedure  

 

To model the execution of orders, the discrete event simulation iterates through each batch listed to be manufactured 

in the batch table in ascending order by the batch's current time and due date, updating batch and equipment statuses 

as manufacturing events are completed. Each batch's current time represents a simulation time. Therefore, during each 

iteration of the simulation, the agent attempts to schedule a batch and changes the environment until all have completed 

their entire fabrication sequence. During each timestep, any batch can be assigned to equipment capable of advancing 

the batch to its subsequent operation. If an available piece of equipment can operate on a batch, then that batch is 

scheduled on the equipment and set as in a production state; no other batch can be scheduled on that equipment while 

the operation is performed because the equipment's status is also updated to be in production. If no equipment is 

available for a batch, the batch is set to a standby state and waits until equipment capable of the batch's operation 

becomes available. In this case, the batch waits by being queued on equipment until the equipment is done processing 

that product. Its current time is updated to be the most probable time a capable piece of equipment for the batch 

becomes available. In cases when multiple lots require the same piece of equipment at the same time, the first come, 

first served (FIFO) scheme is followed to assign the first batch that requests the equipment. FIFO is followed by 

sorting the batch lookup table in ascending order by its current time and then descending order of priority. With this 

scheme, batches with the earliest arrival time that request equipment first are guaranteed to be assigned to equipment 

when it becomes available. In instances of conflict, batches with the highest priority will always be scheduled first. 

The success of the batch processing is determined by stochastic probability, and if the operation is 100% successful, 

the batch is moved to the next operation in its fabrication sequence, and the equipment's following status is determined 

based on stochastic probability. The environment will return comprehensive status updates, presenting valuable 

information regarding both batches and equipment. This dual-status reporting mechanism is designed to offer a holistic 

view of the environment's dynamics, facilitating a deeper understanding of the interactions between batches of tasks 

and the equipment responsible for their execution. The status of the batches will help identify the next event to be 

Figure 2. Architecture of the agent and the Factory. It shows the information each of them has 

available and what functions they have to help in the decision making. 



 

 

 

MODSIM World 2024 

 

 

2024 Paper No. 27 Page 8 of 11 

 

 

processed, and the status of the equipment will help decide if the processing of the next event is possible given the 

equipment.  

 
The procedure of the job scheduling simulation is described below:    

• 1: Initialization   

• 2: Action  
o Sort the batches in the Batch lookup table by time and due date in ascending order of current time 

and descending priority, if defined.    
o Select the next batch in the Batches lookup table that needs to be in a complete state.    
o Identify the next operation by mapping the batch’s Operations ID and Operation Sequence to those 

indexes in the operation table.      
o Identify the equipment pieces capable of performing the batch’s next operation. This identification 

is first done using the operation’s capability ID that links to the Capability table’s capability ID. 

With these Capability table entries, the equipment IDs of each capable equipment are from the 

Equipment table’s equipment ID. Lastly, from the matching, Equipment entries are returned to 

provide the equipment capable of performing the operation.      

• 3: Step  
o Case 1: Schedule the batch on the given equipment.    

▪ Assign the Batch to the defined equipment, update the batch and equipment state.   
▪ Using the capability table, the likeliest time and yield is estimated based on random 

probability distributions. Then, the equipment and batch time are updated, and the yield 

of the operation is given too. With the Batch time being updated, if the Batch is not done 

on its fabrication sequence this will be a new discrete event entry.   
▪ The log statistics of the equipment are added to the equipment history.  
▪ Using the transition matrix and the equipment history, determine the likeliest next state 

for that piece of equipment, then move the equipment to that state.   
▪ Log the new equipment state.  
▪ Based on the yield, determine if some products in the batch might require a rework or 

not. If that is the case, separate those products into a new batch that will be inserted into 

the Batch table.   
▪ Move the batch to the next operation, check if the operation was the last one for the 

Batch, if it was the Batch can be removed.   
▪ Check if all the Batches in the Batch table have been processed, if it is then a signal will 

be changed to show that state.   
▪ Return the current Batch table, the equipment table, and the state of the Simulation (If it 

is done or not done).  
o Case 2: Queue the Batch on the given equipment.   

▪ Assign the batch to equipment.   
▪ Update the time of the Batch to be the time the equipment will be next available on.  

o Repeat processes 2 and 3 until the Batch table is empty.  Then end the simulation.  

 
Asymptotic Analysis  

  

The simulator is designed to be execution time efficient by calculating capacity and throughput assessments as 

quickly as possible. To create these efficiencies, the lookup tables are initialized once the simulation is initialized, 

and each lookup table uses indexing and multi-indexing to speed up queries and searches. To evaluate the 

efficiencies of the approach, asymptotic analysis is used to estimate simulation worst-case runtimes during a 

simulation step. For the Batch Table, the table will have to be sorted by timestamp, when sorting on a single 

column pandas uses mergesort, which takes O(nlogn) with n corresponding to the number of rows in the 

dataframe, as such the cost of sorting the table will be O(nlogn) After sorting the Batch table, the simulator will 

iterate through each batch and take O(n) for each lookup table’s indexed reference. For instance, capability 

lookups exhibit constant time complexity, denoted as O(1), due to the efficient indexing of both the fabrication 

sequence and operation sequence. Similarly, searching for capable equipment also operates in constant time 

(O(1)) because the index associated with capability ID directly maps to all equipment pieces capable of 

performing the operation. When searching for the minimal time until the next capable equipment becomes 
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available, the runtime is O(n), where n is the number of capable equipment. All lookup table updates are also 

O(1) because the indexing on identifier columns allows accessing the element directly based on its key. From the 

reduction of the total of the sorting runtime, lookups, and table updates, the runtime analysis is O(nlogn) per 

simulation step and a total of O(n2logn) for the entire simulation.  

 

 
 

 

 
 

 

 

 

 

 

 

Machine Learning  

  

With the simulation, users can assess batch operations and calculate the time required to manufacture each batch. 

However, for the simulation to yield optimal results in terms of fabrication time, scheduling requires optimization, 

which is made possible by machine learning. In the extension of this work, machine learning will be employed to 

determine optimal simulation parameters, batch priorities, and batch schedules.  

     

The simulation adheres to the Farama Gymnasium standard, defining elements to create custom reinforcement 

learning environments. With complete integration, the simulator can use existing reinforcement learning algorithms, 

such as Stable Baselines’s Proximal Policy Optimization (PPO) and Deep Q-learning Network (DQN) (Schulman, 

2017) (Alavizadeh, 2021). Future extensions of the work will use these algorithms to develop neural-based models 

that will use the state of the batches and equipment (the manufacturing plant and process) as the model’s inputs and 

the batch-to-equipment assignment as the outputted action. Machine learning optimization, schedules, and equipment 

usage will be compared to the FIFO approach described in this work. 

   

Machine Learning will allow production planners to anticipate potential bottlenecks caused by equipment failures and 

proactively allocate resources based on constraints created by a process requiring more time or resources. Overall, 

machine learning will help address the main challenges of production scheduling, namely resource allocation and task 

allocation, resulting in a streamlined production process.  

  

CONCLUSION  

  

Manufacturing environments are dynamic systems where products arrive with different due dates, weights, and 

constraints, and equipment can experience a downtime unexpectedly.  When scheduling production, neglecting any 

of these parameters can make the process challenging. The paper addresses the issue of production scheduling within 

generalized manufacturing Digital Twins by providing a customizable and extensible micro-discrete event simulation 

that simulates manufacturing operations.   

Figure 3. Execution Flow: Orders are inserted into the factory and broken into Batches. The factory 

contains manufacturing equipment and transfer the list of batches and to the Agent. Based on the 

information received, the Agent check if there Batches, if not then it Select the operation to be performed 

and it is applied to the Factory. The processus will be repeated until all the batches have been processed, 

then the Production Schedule is released. 
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The presented simulation environment is built upon OpenAI and Farama Gymnasium framework and simulates task 

allocation and resource allocation in a manufacturing operation. The simulation leverages historical data to recreate 

the dynamism of a manufacturing environment: data-driven equipment state changes, data-driven operational timing 

and yield probabilities, and defined scheduling paths. The simulation's core strength lies in its ability to perform 

computational operations assessment swiftly. This capability facilitates real-time applications, enabling the simulation 

to impact production processes immediately. The key to this real-time functionality is the utilization of indexed look-

up tables. These tables contain both pre-compiled information about the manufacturing plant and processes and real-

time data on ongoing operations within the facility. The simulator is well-suited to support digital twins of 

manufacturing operations., achieving this by seamlessly integrating real-time connectivity, monitoring, and generating 

new simulations based on changes to the physical environment. This enables it to assist in real-time predictive 

maintenance, capacity planning, and equipment scheduling, enhancing the capabilities of digital twins in the 

manufacturing domain.   

     

While the current version of the simulator represents a significant step forward, it is merely the initial phase of a more 

ambitious project that extends similar micro-simulation work that is developing digital twins for other domains, 

including cybersecurity (Schiller et al., 2023) and student learning (Mondesire and Wiegand, 2023), work that aims 

to build probabilistic models for preventive maintenance (Wright et al., 2024), and work to generate data for 

manufacturing using GANs (Tse et al, 2024). The next iteration will introduce machine learning capabilities, paving 

the way for automated equipment planning and scheduling. This advancement aims to optimize production processes 

further, ensuring efficiency and adaptability in an ever-evolving manufacturing landscape. 
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