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ABSTRACT 

 

Collections of autonomously behaving systems, or swarms, are predicted to be an important component of the US 

DoD strategy. Therefore, research into how to create swarms with suitable characteristics, behaviors, and function for 

these different purposes is in the interest of the US military. However, there are challenges in swarm research, 

including technical limitations of existing hardware, the need to address both individual drone level behavior as well 

as the complexities of the entire swarm behavior, and the parameter combinatorics that may be relevant to swarm 

performance in operations. This presentation proposes methodologies for the computer simulation research and 

analyses for experimentation on swarm behavior. Swarm performance data from computer simulation 

experimentations were analyzed to investigate how individual and entire swarm characteristics might affect how well 

the swarm performed a mission. 
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INTRODUCTION  

 

Swarms are groups of entities of similar characteristics that tend to move together and work cooperatively towards an 

overarching goal. Swarm intelligence is based on the concept of swarm theory, which proposes that simple entities 

behaving in a collaborative manner can produce emergent effects. Swarm theory can be regarded as an application of 

General Systems Theory (Bertalanffy, 1968) to certain biological systems such as beehives and ant swarms. Although 

separate entities may behave in a certain way, when these entities combine their behavior, a new result may emerge 

(Navarro and Matia, 2013). This phenomenon is commonly known as ñthe whole is other than the sum of its partsò or 

ñthe whole is more than the sum of its parts,ò (Koffka, 1922) and has been leveraged across many different fields as 

an extension of systems science (Arnold and Wade, 2017). 

 

The use of swarm intelligence has been under investigation for many different applications over the last few decades 

(Arnold et al., 2019). Both centralized and decentralized swarm Artificial Intelligence (AI) have been used in a variety 

of applications and research efforts such a swarm navigation and biologically inspired swarm behavior (Beni and 

Wang, 1993, Oh et al., 2017). Swarm-based software algorithms and systems have been explored by the U.S. 

Department of Defense for many different defense and homeland security applications, to include radiation detection, 

search and rescue, mapping, reconnaissance, and object detection, among others (Arnold et al., 2020; Chung et al., 

2016; Cook, 2017; Savidge et al., 2019; Scharre, 2014). 

 

In general, optimized swarm configurations for these applications are determined through proprietary or application-

specific methods. These methods tend not to generalize beyond specific scenarios or application needs. Although such 

methods are reasonable and suitable for each specific application, we believe there may be more general ways to 

organize and investigate swarm performance based on specific characteristics. However, research on general ways to 

determine these optimal swarm characteristics appears to be minimal. 

 

This work describes and demonstrates a design of experiment approach to conducting simulation experimentation of 

drone swarms. Like prior research, the focus is on one specific application and scenario as our starting point to 

demonstrate the process. However, this methodology can be easily expanded to more general applications if  the 

simulation software exists to support it. This further software development and expansion upon this initial research is 

planned in future work. 

 

OVERVIEW  

 

Computer Simulation Experimentation of Swarms 

 

While swarm experiment designers have a high degree of control over the actual configuration of the swarm, many 

swarms are agent-based systems by nature. Swarm entities are often deliberately designed to behave in a non-

deterministic way (Arnold et al., 2020; Vásárhelyi, et al., 2014; Williams, 2015).  As a result, many swarm behaviors 

can be difficult to predict. Especially in high-dimensional dynamic systems such as swarms, emergent unintended 

consequences may result. 

 

Despite the emergent nature of many swarm systems, the common approach to modeling swarm behavior is often 

restricted to simulating deterministic solutions to specific problems. For example, optimum solution (Kennedy and 

Eberhart, 1995), tolerances (Bjerknes and Winfield, 2012), range (Ugur et al., 2007), demonstration of proof of 

concept of rules (Bahceci and Sahin, 2005), and so on. A more efficient way to recognize and take advantage of the 

emergent behavior of swarms during computer experimentation may be to derive causal relationships between swarm 



UNCLASSIFIED 

MODSIM World 2024 

2024 Paper No. 23 Page 3 of 11 

UNCLASSIFIED 

DISTRIBUTION STATEMENT A: Approved for Public Release. Distribution is unlimited. 

design parameters and swarm performance. Computer simulations of configured systems can be used to understand, 

predict, and control these emergent properties in configured high-dimensional systems (Arnold et al., 2020). 

Understanding relationships among the parameters of a system and the way those relationships affect the resultant 

holistic swarm behavior has numerous benefits. Such knowledge can be used to design a swarm system to perform 

many different types of missions, rather than focusing the system on a single narrowly defined scenario. 

 

Based on this viewpoint, the behavior of configured swarms can be examined using stochastic simulation programs. 

There have been several published reports of using simulation programs to explore the impact of a modification to the 

system as a proof of concept or to study of the impact of single to few factors (Czitrom, 1999). Typically, these efforts 

can be characterized as a one-factor at-a-time (OFAT) approach. A more powerful method uses Design of Experiments 

(DOE), whereby more complex analyses simultaneously assessing multiple variables and their interaction occurs. 

Attention to multiple variables simultaneously is much more effective for adequate testing of multidimensional 

systems such as swarms (Montgomery, 2012). DOE approaches can be utilized to provide insight into causal 

relationships between ways in which a swarm is configured and how the swarm as a whole behaves in virtually 

simulated operational environments. 

 

Virtual Experiment Set Up  

 

US Army DEVCOM Armaments Center has developed a robust, configurable UAS simulation system called 

DroneLab to support research efforts to expose emergent swarm behavior (Arnold et al., 2021). DroneLab is a software 

application designed to facilitate simulation of large numbers of UAS operating collectively as a cohesive but 

decentralized system. DroneLab allows for the definition of an environmental scenario such as a searching for 

survivors after a major natural disaster (tsunami, earthquake, etc.).  The scenario defines the geometry and position of 

the obstacles (buildings) and the locations of the survivors.  DroneLab also allows for the assignment of one of three 

roles to each entity (drone) within the search swarm.  These three roles, which can also be conceptualized as 

ñpersonalityò types, were developed by prioritizing different preprogrammed behaviors from a fixed set of options. 

Examples from this fixed set of options include behaviors such as collision avoidance, battery recharge, formation 

control, and waypoint navigation. Additional behaviors can be added relatively easily due to the polymorphic 

architecture of DroneLab.  The three personality types (roles) developed for this experiment were titled relay, social 

searcher, and anti-social searcher. An entity assigned to the relay role maintains a randomly assigned distance between 

50 and 800 meters from the closest member of the swarm to provide a network infrastructure; this enables other agents 

to continue their behaviors while maintaining connectivity to the other swarm members. The anti-social searcher 

drones prioritize a loose formation behavior, putting a high value on increasing the spread of the swarm thus 

maintaining a greater distance between themselves and all other agents of the swarm compared to the social searcher 

drones. The social searcher role prioritizes a tighter formation between entities in the swarm. All three roles trigger a 

spiral-out behavior upon detecting four or more survivors within a 10-meter radius. This behavior was designed to 

more rapidly locate other survivors that are likely to have congregated nearby (Arnold et al., 2018). 

 

DroneLab is highly configurable and allows for the specification of multiple simulation scenarios that can be executed 

in succession.  A single simulation is defined by listing the number of drones of each personality type and the 

maximum Wi-Fi, or communication, distance for that drone.  Each simulation can be run multiple times as the 

application is not deterministic due to the ability to place survivors at random locations within the scenario.  See the 

section ñDesign of Swarm Experiments Approachò for more details. 

 

The terrain for this experiment was reconstructed based on a satellite photo of Kobe, a large city in Hyogo Prefecture, 

Japan. The Kobe photo was taken hours after the Great Hanshin earthquake of 1995 which caused large-scale 

destruction in the city. In this setup, 919 survivors were placed in the DroneLab simulation; 616 were placed in actual 

locations based on information available from the earthquake, and 300 additional survivors were randomly placed 

throughout the city, in different random locations from run to run. This allows for a realistic representation of a post-

disaster site that has undergone large scale search-and-rescue operations. 

 

Communication Networks  

 

Communication networks are one possible moderator of swarm performance.  Communication networks are a function 

of the communication range of drones and drone proximity to other drones.  Drone proximity to other drones is a 

function of the prioritized behaviors, which are based on responses to the presence of either 1) other drones, in the 
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case of relay, or 2) location of survivors, in the case of social and anti-social drones.  Therefore, swarms consisting of 

the same number of drones will differ in behavior, performance, and communication networks because of the different 

configuration or percentages of social, relay, and anti-social drones within the swarm. 

   

Outputs from DroneLab include matrices that identify which drones have communicated for each minute of the 

mission.  These matrices are input to the network analysis software ORA (Netanomics).  Swarm-level metrics such as 

network density, total centrality, and speed of communication can then be calculated and used in the models that 

predict swarm performance.   

 

DESIGN OF SWARM EXPERIMENTS APPROACH  

 

Design of Experiments (DOE) is used across many industries and application areas with many unique methods tailored 

to different domains. DOE involves systematically defining a dataset to collect, and then statistically analyzing that 

data. It is the only accepted and scientifically credible approach to specifying the datapoints which will support a 

statistical model (Montgomery, 2012). The statistical model generated from the data can be used as a surrogate of the 

underlying model behavior or system phenomena. The statistical modeling of the data is sometimes referred to as 

machine learning (ML). Below, The DOE process used for this simulation experimentation is summarized in five 

phases: plan, design, execute, analyze, and assimilate (Jablonski et al., 2024). 

 

Plan 

 

This phase involves determining the objective, the output(s) of interest, and the modifiable inputs of the simulation 

that we are interested in understanding or optimizing. The objective of this experiment is to understand the effect of 

drone swarm size, drone communication distance, and individual drone characteristics on the time it takes to find 90% 

of survivors after a natural disaster (referred to as mission time). A secondary objective is to understand how   

communication network parameters of the swarm during the mission are changing and how those influence the mission 

time output metric. 

 

This directly leads to the outputs that need to be tracked and recorded. The primary output is the time each survivor is 

found which can be used to determine the mission time. Additionally, several communication network parameters are 

tracked and calculated based on the swarm behavior during the mission; these include network density, total centrality, 

and speed of communication. 

 

The DOE inputs include the total number of drones in the swarm, the portion of drones that were programmed to 

behave in each of three different ways: social searcher, anti-social searcher, and relay, and the maximum 

communication range of the drones. Table 1 shows these inputs and the ranges we considered for each in this 

experiment. 

 

Table 1. DOE Input Factors and Their Ranges 

 

Input Factor  Minimum Value  Maximum Value 

Total Drones  10 50 

Portion Social 0 1 

Portion Anti -Social 0 1 

Portion Relay 0 1 

Communication Range (m) 50 800 

 

Design 

 

The experimental design involves determining the specific combination of values of the input factors that should be 

simulated. Typically, a computer-generated optimal design is employed that is appropriate for the type of data being 

analyzed and the type of model that is expected to be fit to the data. This experiment uses a space filling design with 

an additional maximum projection criterion to maximize the minimum distance between any two points in the full 

experiment as well as in lower dimensional projections. Note that there is a mixture-type constraint in the design space 

for this set of inputs which was accounted for in the computer-generated design: the portion of each type of drone 



UNCLASSIFIED 

MODSIM World 2024 

2024 Paper No. 23 Page 5 of 11 

UNCLASSIFIED 

DISTRIBUTION STATEMENT A: Approved for Public Release. Distribution is unlimited. 

needs to add to one to ensure that the sum of the number of social searcher drones, the number of anti-social searcher 

drones, and the number of relay drones is equal to the total number of drones assigned to the swarm. 

 

The design has 1,000 total runs but was developed in three parts to support the model fitting process: a training set, a 

validation set, and a test set. The training set, which is used to fit the model parameters, is 750 runs. The validation 

set, which is used to determine appropriate hyperparameters, is 150 runs. The test set, which is excluded from the 

model fitting process and used afterwards for model evaluation, is 100 runs. Visualizations of the space-filling design 

are shown in Figure 1. This figure only includes the 100 test set points to avoid overcrowding and for clarity. Figure 

1a is a pairwise scatterplot matrix which shows each input factor against each of the others, i.e. each two-dimensional 

projection of the design space. The triangle shaped distribution of points in the three portion vs. portion boxes represent 

the mixture constraint in the design space: the sum of any two portions will always be less than or equal to one to meet 

the constraint that all three add to one. The bottom left box, representing the total drones verses the communication 

range, are two unconstrainted factors, and the points there are distributed throughout the space. Figure 1b is a ternary 

plot of the three portion factors. In this plot, communication range is represented by color (blue= low ranges, red= 

high ranges) and the points are labeled by the total swarm size. A sample point is circled in plot 1b as well as shown 

in black in plot 1a. This represents a single simulation in the experimental design with the following parameters: drone 

size (total)= 36, portion social searchers= 0.556, portion anti-social searchers= 0.028, portion relay= 0.417, and 

communication range= 231.7 meters.   

 

 
 

Figure 1. A Pairwise Scatterplot (a) and Ternary Plot (b) of the Test Set Space-Filling Design 

 

Figure 2 is provided to aid in reading and interpreting the ternary plot as they will provide a useful tool for visualizing 

results later in the paper. Each side of the triangle 

represents zero of a given drone configuration: bottom is 

zero social searcher, left is zero anti-social searcher, and 

right is zero relay. Each point of the triangle represents a 

swarm of all of one drone configuration: top is all social 

searcher, bottom right is all anti-social searcher, and 

bottom left is all relay. Points within the triangle have 

some mix of all configuration types, with the mid-point of 

the triangle representing equal portions (one third) of all 

three types. 

 

Execute 

 

In this phase, each point in the design is run through 

DroneLab and ORA to obtain the outputs of interest. Due 

to the stochastic nature of the simulation setup and the 

relatively quick-running simulations, each point was 

b. a. 

Figure 2. Understanding the Ternary Plot 
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simulated 10 independent times to better detect the true difference from one point to another (signal) from the 

difference of the same point being run multiple times (noise).  DroneLab gives the time each survivor is found, the 

individual drone locations as a function of time, and a matrix defining how the drones are in communication with each 

other drone as a function of time. The drone locations and communication matrices over time are input into ORA to 

calculate the network parameters of interest. 

 

Analyze 

 

The analysis of the data involves taking the design and outputs from the previous two phases and fitting a statistical 

or machine learning model to that data. In this experiment, the data lends itself well to artificial neural network (ANN), 

and that is what was used to fit models to the data.  For the mission time response, a feed-forward network with two 

hidden layers (7 nodes in layer 1, 5 nodes in layer 2) is fit using the inputs from table 1 in addition to the number of 

survivors found. The output of the model is the time it took to find that number of survivors. This model can be used 

to find the mission time by setting the number of survivors to 828, which is 90% of the 919 total survivors. Figure 3 

shows the model fits on the 100 test set runs. Here the grey points are the actual DroneLab output for each of the ten 

replications of a given run. The blue line is the ANN model fit to the output. There is one run shown (909) where the 

ANN model significantly underpredicts the DroneLab output towards the end of the mission, but in general, the model 

shows good prediction capability on this withheld set of data: within the range of the actual DroneLab output. 

 

 
Figure 3. ANN Model Predictions on the Test Set Data 

 

Assimilate 

 

In this final phase, the model is used to obtain knowledge and learn about the phenomenon being studied, typically in 

relation to the objectives that were defined. In the following Results section, the effect of the input parameters on the 

mission time is presented in detail. In addition, the relationship and influence of the communication network 

parameters are also discussed. 

 

RESULTS 

 

Visualizing Swarm Behavior 

 

The Virtualitics graphic program was used to plot minute by minute x,y,z location of each of the drones.  Each drone 

was color-coded to indicate its behavioral coding, that is, social, anti-social, or relay.  This allowed visualization of 

the overall behavior of swarm.  Insights were gained by this novel graphing of drone behaviors.  Specifically, it 
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revealed that the drones were programmed to return simultaneously to launch stations for recharging, thus possibly 

compromising the mission.  While an examination of the code could reveal this fact, the visualization shows the impact 

of that coding of behavior.  This insight prompted the suggestion of either staggering the release of drones so that the 

return for recharging is staggered or launching drones from different launch sites.  This is an example of how 

visualization of the swarm can demonstrate the impact of individual drone behaviors and coding choices on the overall 

swarm behavior. 

 

DOE Prediction Model: Mission Completion Time 

 

The primary DOE response of interest was the mission completion time, the time it takes to find 90% of the survivors. 

The ANN model predicts the time as a function of swarm size, portion of each type of drone, communication range, 

and number of survivors found. To visualize the model and understand how each of those parameters influences 

mission completion time, the ANN model was used to generate several different types of plots.  

 

In figure 4, snapshot ternary contour plots show how the output varies with all the input factors. The axes of the ternary 

plots represent the portion of each type of drone: bottom of the triangle is no social searcher drones, left of the triangle 

is no anti-social searcher drones, and right of the triangle is no relay drones (refer to Figure 2 and its description). The 

left half of the figure is at a point mid-mission, when 400 survivors have been found. The right half is near the end of 

the mission when 800 survivors have been found. The top ternary plots show the smallest swarm size of 10 and the 

bottom plots show the largest swarm sizes of 50. From left to right are three different communication ranges. The plot 

is colored by the time with the legend in seconds; each color contour represents a 5-minute interval with the blue end 

of the scale showing the fastest times and the red end of the scale showing the slowest times. The plots show 

differences in the optimal configurations based on swarm size and communication range. For example, with a swarm 

of 10 drones and a communication range of only 50 meters, a swarm of all social searcher drones performs the full 

mission the fastest, as indicated by the lighter red color in the top corner of that ternary plot. With a better 

communication range of 350 meters, a mix of social and anti-social searchers with no relay drones is optimal (yellow 

on the right of that ternary plot), with that increased communication range decreasing the mission time by around 20 

minutes. At the highest communication range, the 10-drone swarm performs about the same no matter the make-up, 

given there are some social searchers in the swarm (green everywhere but the very bottom of that ternary plot). 

However, the mission time is only decreased by about 5 minutes compared to using the optimal configuration when 

the communication range is 350 meters. Compare that to a 50-drone swarm with the lowest communication; the 

optimum occurs with a mix of social searchers and relay drones and is about 15 minutes faster than the highest 

communication range with only 10 drones in the swarm. Increasing the communication range to 350 meters results in 

a mix of all three types doing well, but only further decreases the mission time by around 5 minutes. Little to no 

improvements are gained by increasing beyond a 350-meter communication range. 

 

 
Figure 4. Predicted Rescue Time Ternary Plots 
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Figure 5 again shows 5-minute contours of the rescue time in seconds; however, in this plot the ANN model is used 

to find the configuration of drone types that completed the mission fastest for a given swarm size and communication 

range. This figure can be used to visualize the relationship between swarm size and communication range on the 

mission completion time, given that the optimal configuration of drone types is used. This plot shows that swarm size 

matters in our scenario; mission completion time continues to decrease as the swarm size increases and this happens 

at a higher rate the lower the communication range. The 

communication range also affects performance with higher 

ranges resulting in faster missions; however, while this is 

very prominent with small swarm sizes and lower 

communication ranges, there are diminishing returns. With 

10-drone swarms, a communication range beyond 300-400 

meters does not buy too much more performance, and with 

50-drone swarms, the mission time remains in the same 10ï

15-minute contour no matter what the communication 

range. This reenforces the trend seen in the ternary plots in 

Figure 4. 

 

In Figure 6, the focus is no longer on mission completion 

time, but instead on the optimal configuration of drones. 

The axes show the number of survivors rescued verses the 

optimal portion of each drone type: relay in blue, social 

searcher in green, and anti-social searcher in red. Subplots 

are shown for five different drone swarm sizes, increasing 

by 10 from left to right, and for six different communication ranges, increasing by 150 meters from top to bottom. A 

key finding from this plot is that the optimal configuration changes significantly over the course of the mission. For 

example, before any survivors are found, spreading out the swarm with anti-social searchers optimizes the time it 

takes to find those first survivors; however, unless the swarm size is smaller or the communication range is higher, 

anti-social searchers have limited use over the remainder of the mission. This change in optimal configuration over 

time leads us to hypothesize that there are further gains in mission completion time from re-programing drone types 

throughout the mission based on the current optimal configuration. Future work is planned to investigate this approach. 

 

Figure 6. Optimal Configurations over the Mission Time 

 

Communication Network Analysis 

 

A starting point to the communication network analysis involved looking at 30 different swarm configurations. This 

analysis was completed on older data that had been generated where the total number of drones and their 

communication range was kept constant (Mezzacappa et al., 2021). As in this experiment, each swarm had varying 

Figure 5. Predicted Mission Time in Seconds 

Given an Optimal Configuration 
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percentages of entities with one of three different operational behaviors (i.e., social searcher, relay, anti-social 

searcher). Results indicated significant differences in time-to-mission-completion among the 30 configurations. 

Statistical analyses of the network parameters revealed significant differences in these variables. The best performing 

swarm configuration had a greater number of communication linkages and faster speed of communication pathways 

through the swarm network. Figure 7 shows the network linkages at the beginning, middle, and end of the mission for 

both the fastest and slowest performing swarms.  

 
 

Figure 7. Network and Linkages in Fastest and Slowest Performing Swarms 

 

That previous work generated the hypothesis that the communication network parameters were an important part of 

the swarm performance. This led to fitting preliminary ANN prediction models to some of the communication network 

parameters of interest on the current experimental data as a function of the DOE input factors. The communication 

network parameters considered were network density, speed of communication, and total degree centrality. Figures 7 

through 9 show these preliminary results, in the same ternary sub-plot format as Figure 4. Although trends change 

over the communication network metrics based on swarm size, communication range, and mid verses end of mission 

timing, the most common trend is a change in network metrics over the relay drone configuration ternary axis.  Most 

prominently, as the number of relay drones increases, the network density tends to decrease (Figure 7). This can be 

explained by the fact that the relay drones serve to spread out the swarm network by allowing subgroups of searcher 

drones to form in different areas of the terrain and not necessarily remain in communication range with other searcher 

sub-groups. Similar trends can be found in some of the speed of communication (Figure 8) and total centrality (Figure 

9) sub-plots; however, other configuration axes (social or anti-social searchers) can be more prominent depending on 

the mission completeness, the swarm size, and the communication range. 

 

 
Figure 8. Network Density Ternary Plots 


