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ABSTRACT

Collections of autonomously behaving systems, or swarms, are predicted to be an important component of the US
DoD strategy. Therefore, research into how to create swarms with suitable characteristics, behaviors, and function for
these different purposes is the interest of the US military. However, there are challenges in swarm research,
including technical limitations of existing hardware, the need to address both individual drone level behavior as well
as the complexities of the entire swarm behaviod, the parameter combinatorics that may be relevant to swarm
performance in operation3his presentation proposes methodologies for the computer simulation research and
analyses for experimentation on swarm behavior. Swarm performance data from computer simulation
experimentations were analyzed to investigate how individual and entire sivaracteristics might affect how well

the swarm performed a mission.
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INTRODUCTION

Swarms are groups of entities of similar characteristics that tend to move together and work cooperatively towards an
overarching goal. Swarm intelligence is based on the concept of swarm theory, which proposes that simple entities
behaving in a collaborize manner can produce emergent effects. Swarm theory can be regarded as an application of
General Systems Theoffgertalanffy,1968 to certain biological systems such as beehives and ant swarms. Although
separate entities may behave in a certain waynuinese entities combine their behavior, a new result may emerge
(Navarroand Mata, 2013. Thi s phenomenon is commonly known as At he
ithe whole is mor e (Koffka,n929 énd has heen levefaged acsss pnany different fields as

an extension of systems scierf{éenold and Wade, 2037

The use of swarm intelligence has been under investigation for many different applications over the last few decades
(Arnold et al, 2019. Both centralized and decentralized swarm Artificial Intelligence (Al) have been used in a variety

of applications and research efforts such a swarm navigatiobialugjically inspiredswarm behavio(Beni and

Wang 1993 Oh et al.,2017. Swarmbased software algorithms and systems have been explored by the U.S.
Department of Defense for many different defense and lameecurity applications, to include radiation detection,
search and rescue, mapping, reconnaissance, and object detection, amor(@otbierst al., 2020 Chunget al.,

2016 Cook 2017 Savidgeet al., 2019Scharre2014).

In general, optimized swarm configurations for these applications are determined through proprietary or application
specific methods. These methods tend not to generalize beyond specific scenarios or application needs. Although such
methods are reasonaldad suitable for each specific application, we believe there may be more general ways to
organize and investigate swarm performanased orspecific characteristics. However, research on general ways to
determine these optimal swarm characteristics appgedre minimal.

This work describeand demonstratess design of experiment approach to conducting simulation experimentation of
drone swarmsLike prior research, the focus is on one specific application and scexsanar starting point to
demonstrate the procedsowever, this methodology can be easily expanded to more general applicatioas
simulation softwarexiststo support it. This further software developmantl expansion upahis initial research is
planned in future work.

OVERVIEW
Computer Simulation Experimentation of Swarms

While swarm experiment designers have a high degree of control over the actual configuration of the swarm, many
swarms are agefitased systems by nature. Swarm entities are often deliberately designed to behave-in a non
deterministic way(Arnold et al., 2020Vasarhelyij et al, 2014 Williams, 2015. As a result, many swarm behaviors

can be difficult to predict. Especially in higlimensional dynamic systems such as swarms, emergent unintended
consequences may result.

Despite the emergent nature of many swarm systems, the common approach to modeling swarm behavior is often
restricted to simulating deterministic solutions to specific problems. For example, optimum s(detoredy and

Eberhart 1995) toleranceqBjerknesand Winfied, 2012) range(Ugur et al., 2007) demonstration of proof of

concept of rulegBahceciand Sahin2005) and so on. A more efficient way to recognize and take advantage of the
emergent behavior of swarms during computer experimentatiotenyderive causal relationships between swarm
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design parameters and swarm performance. Computer simulations of configured systems can be used to understand,
predict, and control these emergent properties in configureddiigénsional systemgArnold et al., 2020)
Understanding relationships among the parameters of a system and the way those relationships affect the resultant
holistic swarm behavior has numerous benefits. Such knowledge can be used to design a swarm system to perform
many different types of misgig, rather than focusing the systemaasinglenarrowly definedscenario.

Based on this viewpoint, the behavior of configured swarms can be examined using stochastic simulation programs.
There have been several published reports of using simulation programs to explore the impact of a modification to the
system as a proof of cosjgt or to study of the impact of single to few fac{@szitrom,1999) Typically, these efforts

can be characterized as a daetor ata-time (OFAT) approach. A more powerful method uses Design of Experiments
(DOE), whereby more complex analyses simudtarsly assessing multiple variables and their interaction occurs.
Attention to multiple variables simultaneously is much more effective for adequate testing of multidimensional
systems such as swarnl@lontgomery 2012) DOE approaches can be utilized to provide insight into causal
relationships between ways in which a swarm is configured and how the swarm as a whole behaves in virtually
simulated operational environments.

Virtual Experiment Set Up

US Army DEVCOM Armaments Center has developed a rgbosbfigurable UAS simulation systenctalled
DroneLabto support research effortsexpose emergestvarm behavio(Arnold et al., 2021)DroneLab is a software
application designed to facilitate simulation of large numbers of UAS operating collectively as a cohesive but
decentralized systenbroneLab allows for the definition of an environmental scenario such sesarcing for
survivors aftemmajor natural disaster (tsungraarthquakgeetc). The scenario defines the geometng positiorof

the obstacles (buildings) and the locations ofsim¥ivors DronelLab also allows for the assignment of one of three
roles to eactentity (drone)within the search swarm.These three roles, which can also be conceptualized as

i per s on a,lwere getelogey hy @rioritizing different preprogrammed behaviors from a fixed set of options.
Examples from this fixed set of options include behaviors such as collision avoidance, battery recharge, formation
control, and waypoint navigatiorAdditional behaviors can be addedlatively easily due to theolymorphic
architecture of DroneLabThe three personality typéles)developed fothis experiment were titlecelay, social
searcher, andnti-socialsearcherAn entity assigned to the relay role maintains a randomly assigned distance between
50 and 800 meters from the closest member of the swarm to provide a network infrasthisemallesother agents

to continue their behaviors while maintaining connectivity to the other swarm menrfberanti-social searcher

drones prioritize a loose formation behavior, putting a high value on increasing the spread of the swarm thus
maintaininga greater distance between themselves and all other agents of the swarm compasediad $barcher

drones. Theocial searcher role prioritizes a tighter formation between entities in the swarm. All three roles trigger a
spiratout behavior upon detecting four or more survivors within ank@er radius. This behavior was desighed

more rapidly locate other survivors thae dikely to have congregated neaidynold et al., 2018)

DroneLab is highly configurable and allows for the specification of multiple simulation scenarios that can be executed
in succession.A single simulation is defined by listing the number of drones of each personality type and the
maximum Wi-Fi, or communicationdistance for that droneEach simulation can be run multiple times as the
application is not deterministitue to the ability tglacesurvivorsat random locations within the scenari®ee the
section SwhremEXx ger iomhent s Approacho for more details.

Theterrainfor this experimentvasreconstructed based osatellite photo of Kobe, a large city in Hyogo Prefecture,
Japan. The Kobe photo was taken hours after the Gtaashin earthquake of 1995 which caused l=gme
destruction in the cityin this setup, 919 survivors wepéaced in the DronelLab simulatio®l6 were placed in actual
locations based oimformation available from the eaghake,and 300additional survivors were randomly placed
throughout the city, in differemandomlocations fran run to runThis allows for a realisticepresentationf a post
disaster site that Bandergone large scale seawnidrescue operations.

Communication Networks

Communication networkareone possible moderator of swarm performar@emmunication networks are a function
of the communication range of drones and drone proximity to other drones. Drone proximity to other drones is a
function of the prioritized behaviors, which are based on responses to the presence of either IQrabeindthe

2024 Paper No23 Page3 of 11
UNCLASSIFIED
DISTRIBUTION STATEMENT A: Approved for Public Releadgistribution is unlimited.



UNCLASSIFIED
MODSIM World 2024

case ofelay, or 2) location of survivors, in the casesafial andanti-social drones. Therefore, swarms consisting of
the same number of drones will differ in behavior, performance, and communication networks because of the different
configuration or percentages sufcial, relay, andanti-social drones within the swarm.

Outputs from DroneLab include mateisthat identify which drones have communicatéat each minute of the
mission. Thesenatricesare input to the network analysis software ORA (NetanomBajarmlevel metrics such as
network density, total centralityand speed of communication can then daculatedand usedin the moded that
predictswarm performance.

DESIGN OF SWARM EXPERIMENTS APPROACH

Design of Experiments (DOE) is used across many industries and applicationitdr@aany unique methods tailored

to different domains. DOE involves systematically defining a dataset to collect, and then statistically analyzing that
data. It is the only accepted and scientifically credible approach to specifying the datapoints whscippuiit a
statistical mode{Montgomery 2012) The statistical model generated from the data can be used as a surrogate of the
underlying model behavior or system phenomena. The statistical modeling of the data is sometimes referred to as
machine learnindML). Below, The DOE process used for tsimulation experimentation summarizd in five
phasesplan, design, execute, analyze, and assim{liblonski et al., 2024)

Plan

This phasenvolves determining the objective, the output(s) of interest, anchdwifiableinputsof the simulation
that we are interested in understanding or optimiZiing objective of this experimeig tounderstand the effect of
drone swarm size, drone communication distancejratiddual dronecharacteristicen the time it takes to find 90%
of survivors after anatural disaster(referred to as mission timep secondary objectivés to understandow
communicatiometwork parameters of the swarm during the mission are changing and hoimflieseethemission
time output metric.

This directly leads to the outputs that need to be tracked and recth@epiimary output is the time each survivor is
found whichcan be used to determine the mission time. Additionally, sevenmaunicatiometwork parameters are
tracked and calculated based on the swaghaviorduring the missiorthese includeetwork densitytotal centrality
andspeed of communication

The DOE inputsnclude the total number of drosien the swarm, the portioof drones that were programmed to
behave in each of three different waysocial searcher antisocial searcher, and relayand the maximum
communication range of the dronéable 1 shows these inputs and the ranges we considered for each in this
experiment.

Table 1. DOE Input Factors and Their Ranges

Input Factor Minimum Value Maximum Value
Total Drones 10 50
Portion Social 0 1
Portion Anti -Social 0 1
Portion Relay 0 1
Communication Range(m) 50 800

Design

The experimental design involvdetermining the specific combination of values of the input factors that should be
simulated.Typically, acomputergenerateaptimal design i@mployed that is appropriater thetype of data being
analyzed and the type of model that is expected to be fit to theTddgaexperiment uses a space filling design with
an additional maximum projection criteridm maximize the minimum distance between any two pantge full
experiment as well as in lower dimensional projectidltge that therés amixture-typeconstraint in the design space

for this setof inputswhich was accounted for in the computgmerated designhe portion of each type of drone
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needto add tooneto ensure that theum of thenumber of sociasearchedrones the number of anocialsearcher
drones, and the number of relay drones is equal to the total number of aseigesed to the swarm.

The desigrhas 1,000 total runs butas developed in three pattssupport the model fitting process: a training set, a
validation set, and a test s&he training set, whicks used to fit the model parameteisy/50 rurs. The validation

set whichis used to determine appropriate hyperparameiers50 runs. The test set, whighexcluded from the
model fitting process and used afterwards for model evaluation, is 100/isnalizations of the spad#ling design

are shown in Figuré. This figure only includes the 100 test set psiotavoid overcrowding anfibr clarity. Figure
lais a pairwisescatterplot matrix which shows each input factor agaiash of thethers i.e. each twalimensional
projection of the design spadée triangle shapadistribution of points in the three portion. y®rtion boxes represent
the mixture constraint in the design spabe sum of any two portiongill always beless than or equal to ot@meet

the constraint that all three add to ofiae bottom left box, representing the total dror&se the communication
range are two unconstrainted factgmnd the pointshere are distributed throughout the spadtigurelb is a ternary
plot of the three portion factargn this plot, communication range is represented by color (blue= low ranges, red=
high rangesand the points are labeled by the total swarm siz@ample point is circled in pldib as well as shown

in black in plotla. This represents a single simulatiorthe experimental desigmith the following parameters: drone
size (total)=36, portion social searcher$x5%, portion antisocial searcher 0.028, portion relay= 0.417&nd
communication range231.7 meters.
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Figure 1. A Pairwise Scatterplot(a) and Ternary Plot (b) of the Test Set Spacé&illing Design

Figure2 is provided to aid in reading and interpreting the ternary plot as they will provide atoséfal visualizing
results later in the paperEach side of the triangle

representzero of a giendroneconfiguration: bottom is 0

zerosocial searcheleft is zeroantisocial searcher, and
right is zerorelay. Each point of the triangle represeats
swarm of all of one drone configuration: top is all social
searcher,bottom right is all antsocial searcher, and
bottom left is all relayPoints within the triangle have
some mix of all configuration types, with the rpdint of
the triangle representingqual portions (one third) of all
three types.

Execute

In this phase, each point in the design is run throug '
DroneLab andRA to obtain the outputsf interestDue < #3%% Dg"‘:;‘:w S5

to the stochasticnature of thesimulation setup anthe Portion faay
relatively quickrunning simulations, eaclpoint was Figure 2. Understanding the Ternary Plot
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simulated10 independentimes to better detect thetrue difference from one point to another (signal) from the
differenceof the same point being run multiple times (naisByoneLab gives the time each survivor is fopihck
individual drone locationas a function of timeandamatrix defininghowthedronesare in communication with each
otherdrone as a function of tim@he drondocationsand communicatiomatricesover timeareinput into ORA to
calculate the network parameters of interest.

Analyze

The analysis of the datavolves taking the design and outputs from the previous two phases and fitatistical

or machine learninodelto that dataln this experiment, the data lends itself wekttficial neural networKANN),

and that is what was usedftomodels to the dataFor themission time response,feedforward networkwith two
hidden layers{nodesm layer 1,5 nodes in layer 2s fit using the inputs from tablkin addition tothe number of
survivors found. The output of the modgkhe timeit took to find thatumber of survivorsThis model can be used

to find the mission time by setting the number of swrs to828 which is 90% of thé19total survivors Figure3
showsthe model fits orthe 100 test satins.Here the grey points are the actual DronelLab output for each of the ten
replications of a given run. The blue line is hdN model fit to the outputThere is one rushown(909) where the
ANN model significantly underpredicts tiironelLab outputowards the end of the mission, but in general, the model
shows good prediction capability on this withheld set of.daithin the range of the actual DroneLab output

Run#
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Figure 3. ANN Model Predictions onthe Test Set Data
Assimilate

In this final phasethe model is used twbtainknowledgeand learn about thehenomenomeing studid, typically in
relation to the objectives that were defined.Ha tollowing Results section, tleffect of the input parameters on the
mission time is presentedn detail. In addition,the relationship and influence of theommunicationnetwork
parameters are also discussed.

RESULTS
Visualizing Swarm Behavior

TheVirtualitics graphic program was used to plot minute by minute x,y,z location of each of the drones. Each drone
was colorcoded to indicate its behavioral codinibat is,social, anti-social, orrelay. This allowed visualization of
the overall behavior of swarminsights were gained by this novel graphing of drone behaviors. Specifically, it
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revealed that the drones were programmegktiorn simultaneouslyto launchstationsfor recharging thus possibly
compromising the mission. While an examination of the code could reveal this fact, the visualization shows the impact
of tha coding of behavior. This insight prompted the suggestion of either staggering the release of drones so that the
return for recharging is staggered or launching drones from different launch Sités.is an example of how
visualization of the swarmandemonstrat¢gheimpactof individual drone behaviors and codidgoicesonthe overall

swarm behavior.

DOE Prediction Model: Mission Completion Time

The primaryDOE response of interest was the mission completion time, the time it takes to find 90% of the survivors.
The ANN model predicts the time as a function of swarm giagjon of each type of drone, communication range,
and number of survivors found.o visualize the model and understand how each of those parameters influences
missioncompletion time, the ANN model was used to generate several different types of plots.

In figure4, snapshot ternary contour platsow how the output vari@gth all the input factors. The axes of the ternary
plots represent the portion of each type of drama¢tomof the trianglds no social searendrones)eft of the triangle

is no antisocial searcher drones, and righthe trianglds no relay dronegéferto Figure2 and its description The

left half of thefigure is at a point miegmission, when 400 sumrs have been found. The right half is near the end of
the mission when@ survivors have been founthe top ternary plots show the smallsatarm size of 10 and the
bottom plots show the largest swarm sizes o 0m left to right are three different communication ranges. The plot
is colored by théime with the legend in seconds; eacitoc contour representsmminuteintervalwith the blue end

of the scale showing the fastest times and the red end of the scale showing the slowe$hé&npdsts show
differences in theptimal configurations based on swarm size and communication famgexample, with a swarm

of 10 dronesand a communication range of only 50 meters, a swarm of all ssziathedrones performshe full
mission the fastest as indicated by the lightered color in the top corner of dh ternary plat With a better
communication range of 350 meteagnix ofsocial and artsocial searchers with no relay dromesptimal(yellow

on the right of that ternary plotyvith that increased communication range decreasing the mission tiareund20
minutes.At the highest communication range, tt@droneswarm performs about the same no matter the rapke
given there are some sociakarchers in the swar(green everywhere but the very bottom of that ternary .plot)
However, the mission time is only decreasedabgut 5 minutes compared uising theoptimal configuratiorwhen

the communication rangé 350 metersCompare that to a 5@rone swarnmwith the lowest communication; the
optimum occurs with a mix a$ocial searchers and relay drorsewl isabout15 minutes faster than the highest
communication range with only yones in the swarm. Increasing the communication ramgs0metersresults in

a mix of all three types doing webut only further decreases the mission time by around 5 minutes. Little to no
improvements are gained by increasiiyonda 358meter communication range.

Mid Mission \ End of Mission
Communication Range (m)

800 350 800

Total Swarm Size

Figure 4. Predicted Rescue Timé ernary Plots
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Figure5 again show&-minutecontours ofthe rescuetime in secondshowever, in this plot the ANN model is used
to find the configuratiorof dronetypes that completed the mission fastest for argsearm size and communication
range This figure can be used taisualize the relationship between swarm sinel communication rangen the
mission completion time, given that the optimal configuration of drone tgpesedThis plot shows that swarm size
mattersin our scenario; mission completion time continues to decrease swdh@ size increasesmdthis happens
at a higher rate the lower the communication rarfigme
communication range also affects performance with higher 50
ranges resulting ifaster missionshowever,while this is ':Zgg
very prominent with smallswarm sizes and lower 3300
communication rangeshere are diminishing returns. With - 3000
10-drone swarms, a communication range beyondZZD 2700
metersdoes not buy too much more performance, and with o
50-drone swarmghe mission time remains in the sah@é 1800
15minute contour no matter what the communication 1500
range.This reaforces the trend seen in the ternary plots in 20 o
Figure 4. 600

300

In Figure 6, the focus is no longer on mission completion 1o M 0
100 200 300 400 500 600 700 800

time, but instead on the optimal configuration of drones. Communication Range

The axes show the number of survivors rescued verses thehgure 5. Predicted Mission Time in Seconds
optimal portion of each drone typeelay in blue, social
searcher in green, and asticial searcher in re&ubplots
are shown for five different drone swarm sizes, increasing
by 10 from left to rightand for six different communication ranges, increasing by 150 meters from top to bsttom.
key finding from this plois that the optiral configuration changes significantly over the course of the missan
example, bfore any survivors are foundpreading out the swarm witinti-social searchersptimizesthe time it
takes to find those first survivgreowever, unless thewarm size is smaller or the communication range is higher,
antisocial searchersave limited use over the remainder of the missidns change in optimal configuration over
time leads us to hypothesize thla¢rearefurther gains in mission completion timeifn reprograming drone types
throughout the mission based on the current optimal configur&titure work is planned to investigate this approach.
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Figure 6. Optimal Configurations over the Mission Time
Communication Network Analysis

A starting point to theommunicatiometwork analysignvolved looking at 3@ifferent swarm configurationd his
analysis was completed on older data that had been generated where the total number of drones and their
communication range was kept const@viezzacappat al., 202 As in this experiment,aeh swarm hagarying
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percentages of entities withne of three different operational behavior®.( social searcher,relay, anti-social
searcher). Results indicatesignificant differences in tim#o-missiorcompletionamong the 30 configurations.
Statistical analyses of the network parameters reve@edicant differences in thesenables The best performing
swarm configuration had a greatarmber of communication linkages and faster speamwimunication pathways
through the swarm networkigure 7 shows the netwolikkages athe beginning, middle, and end of the mission for
both the fastest and slowest performing swarms.

Figure 7. Network and Linkages in Fastest and Slowest Performing Swarms

That previous work generated the hypothesis that the communication network parameters were an important part of
the swarm performance. This led to fittipgeliminaryANN prediction models to some of themmunication network
parameters of interesh the current experimental data as a function of the DOE input fatteescommunication
network parameters considered weedwork density, speed of communication, and total degree centradjtyres?
through9 show these preliminaryresults, in the same tary subplot format as Figurd. Although trends change

over thecommunication networknetrics based on swarm siz@mmunication range, and mid verses end of mission
timing, the most common trend is a changaeatwork metrics over the relay drone configuratiemary axis.Most
prominently, & the number of relay drones increases nitevork density tends to decred&égure 7) This can be
explained by the fact that the relay drones serve to spread out the swarm mgtaiwlving subgroups of searcher
drones to fornin different areas ahe terrain and not necessarily remain in communication range with other searcher
sub-groups.Similar trends can be found in some of the speed of communi¢kigure 8)and total centralityFigure

9) subplots however, other configuration axes (social or-aotial searchergan be more prominent depending on

the mission completeness, the swarm size, and the communication range.

Figure 8. Network Density Ternary Plots
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