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ABSTRACT 
 
Feature selection and hyperparameter tuning are important components of a machine learning pipeline. In practice, 
these components are often optimized independently of each other, for example, first optimizing feature selection and 
then optimizing hyperparameters. This results in the complex dependencies between the parameter spaces to be 
ignored. To account for such dependencies, Bayesian optimization routines have been developed that explicitly 
account for interactions and also uncertainty in the parameter spaces. Although Bayesian approaches are widely used, 
a major limitation is the difficulty in parallelizing the computation due to the serial nature of the parameter updates. 
To overcome limitations with dependencies in parameter spaces and parallel computing, we demonstrate the 
application of stochastic optimization algorithms in jointly optimizing feature selection and hyperparameter tuning on 
simulated and benchmark data sets. Specifically, we compare several stochastic algorithms (e.g., random search, 
genetic algorithms, particle swarm optimization, random search with dynamic updating) with non-stochastic and 
Bayesian algorithms to optimize feature selection and hyperparameter tuning of gradient boosting tree classifiers. Our 
results highlight the effectiveness of stochastic optimization for feature selection and hyperparameter tuning across a 
variety of data sets, including high-dimensional data and noisy data. 
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INTRODUCTION 
 
Machine learning has become increasingly popular across many industries and remains one of the most in demand 
technologies for businesses. Despite this popularity, however, the process for developing, deploying, and continuously 
improving machine learning pipelines is becoming more challenging given complexities with models and the data 
they consume (Sculley et al. 2015). A substantive part of developing and maintaining accurate real-world machine 
learning systems involves optimizing components of the prediction pipeline. Among these, two important components 
are feature selection and hyperparameter tuning. Feature selection, also known as variable selection, is the process of 
identifying an optimal subset of relevant features as model inputs. Feature selection techniques are used for several 
reasons, including to improve the predictive accuracy and generalization of models by reducing overfitting and 
eliminating irrelevant or redundant features, reduce the computational cost and time for model training and inference, 
and simplify models to increase interpretability (Colaco et al., 2019; Liu et al., 2010). Hyperparameter tuning is the 
process of choosing a set of optimal hyperparameters (i.e., parameter whose value controls the learning process) for a 
learning algorithm (Hastie et al., 2009). Similar to feature selection techniques, hyperparameter tuning techniques are 
used to primarily improve predictive accuracy and generalization of models by reducing overfitting.  
 
In real-world problems, the parameter spaces for both features and hyperparameters are high dimensional, involve 
complex interactions between parameters, and have a large (potentially infinite) number of testable configurations. 
For feature spaces, we can easily enumerate the number of testable configurations. Let 𝑓 be the number of features, 
then the total number of testable configurations is given by 2!, where 2 denotes the number of scenarios for a feature 
being selected (i.e., 1=yes, 0=no). On the contrary, for hyperparameter spaces, the total number of testable 
configurations is not always enumerable given that the space can consist of both discrete and continuous parameters. 
In the discrete case, we can enumerate the total number of testable configurations. Let 𝑝 be the number of discrete 
hyperparameters and ℎ" be the number of discrete values for the 𝑖th hyperparameter, then the total number of testable 
configurations is given by the Cartesian product of the 𝑝 individual hyperparameter spaces, ℎ# ∗ ℎ$ ∗ ⋯∗ ℎ%. In the 
case with continuous hyperparameters, the number of testable configurations becomes infinite and no longer 
enumerable, even with a single continuous hyperparameter.  
 
From an optimization perspective, feature selection and hyperparameter tuning can be viewed as two independent (or 
conditionally independent) optimization problems or one joint optimization problem. Given the size of the individual 
search spaces, it is clear that the size of the joint search space is significantly larger and more complicated since 
parameter dependencies may exist both within and between search spaces. Technically, the search space in the 
independent optimization case is a subset of the search space in the joint optimization case. Therefore, theoretically 
the solution of joint optimization problem is at least as optimal as the solution of the independent optimization 
problem. In practice, however, brute force or exhaustive search algorithms are impractical for both problems and a 
global optimum is rarely obtained. Existing algorithms for large parameter spaces can only explore a subset of the 
search space due to computational complexity constraints. Importantly, these constraints lead to local optimum 
solutions for both types of problems, which can explain why joint optimization does not always outperform 
independent optimization. 
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Problem Statement 
 
To formally define the problem, let the 𝐱! ∈ ℝ! be a 𝑓-dimensional vector of binary values for feature inclusion (i.e., 
1=yes, 0=no) and 𝐱& ∈ ℝ& be a ℎ-dimensional vector of continuous values for hyperparameters. The joint optimization 
problem of selecting features and hyperparameters is the maximum for a function 𝑓:	ℝ!'& → ℝ, 
 

𝐱(%) = arg	max
𝐱∈ℝ!"#

𝑓(𝐱), (1) 

 
where 𝑓 is often a function that returns a model performance metric such as average classification accuracy from 
cross-validation. Techniques for solving Equation (1) can be categorized into three classes: (1) non-stochastic 
optimization, (2) Bayesian optimization, and (3) stochastic optimization. Non-stochastic optimization techniques 
decouple the joint optimization given by Equation (1) and focus on independently optimizing feature selection first 
(selecting 𝐱!), then optimizing hyperparameters (selecting 𝐱&), or vice-versa. A commonly used approach that is easy 
to implement is to first select relevant features using a random forest (Breiman, 2001) and then optimize a model’s 
hyperparameters using a grid search. A grid search approximates a brute force search for hyperparameter tuning by 
first discretizing each hyperparameter space of interest and then calculating the Cartesian product of the discretized 
spaces to generate testable hyperparameter configurations (Bergstra & Bengio, 2012). The decoupling of optimization 
problems offers flexibility such that different feature selection techniques (e.g., filter methods, wrapper methods, 
embedded methods) can be combined with different hyperparameter tuning techniques (e.g., random search, Bayesian 
optimization). A notable limitation, however, is that the decoupling ignores complex dependencies between the feature 
and hyperparameter spaces, which may result in unstable local optimum solutions.  
 
In an effort to explicitly account for model dependencies in parameter spaces, Bayesian optimization techniques can 
be used to jointly model the feature and hyperparameter spaces. These techniques efficiently trade off exploration 
and exploitation of the parameter space to identify a configuration that best optimizes some overall evaluation 
metric (Snoek et al., 2012). Among the several popular implementations, the most popular is the Tree of Parzen 
Estimators (TPE) as described in Bergstra et al. 2013. Although Bayesian techniques have been shown to have 
excellent performance in practice, a major limitation is the difficulty in parallelizing the search evaluation due to the 
serial nature of the parameter updates (Li et al., 2016b). As such, to overcome limitations with dependencies in 
parameter spaces and parallel search evaluation, stochastic optimization techniques can be leveraged.  
 
Stochastic optimization methods generate and use random variables as candidate solutions to Equation (1). In the 
simplest implementation, random search (Bergstra & Bengio, 2012) repeatedly draws candidate solutions for a finite 
number of iterations and the best solution is kept as the optimal configuration. Random search has been shown to 
outperform all other methods, including TPE; however, it does so at the expense of computing time (Li et al., 
2016b). Other stochastic algorithms, such as genetic algorithms and particle swarm optimization, seek to improve on 
random search by using meta-heuristics to more efficiently search through the parameter space after evaluating an 
initial set of random candidates. The literature has shown the success of these algorithms in solving feature selection 
tasks and hyperparameter optimization tasks (Kabir et al., 2011; Lane et al., 2013; Li et al., 2009; Xue et al., 2013), 
yet little research exists on the effectiveness of such algorithms for tasks such as joint optimization in machine 
learning pipelines.   
 
This paper evaluates the effectiveness of stochastic algorithms for joint optimization of feature selection and 
hyperparameter tuning. We introduce a modification to the random search algorithm using dynamic updating. In 
short, random search is run for a predefined number of iterations, then the feature selection and hyperparameter 
distributions are updated based on the past configuration results, and a new set of candidate solutions are sampled 
from their updated distributions.  
 
EXPERIMENTS 
 
In this section, we evaluate stochastic optimization methods for feature selection and hyperparameter tuning on both 
simulated and real-world data sets. Specifically, we compare stochastic optimization methods (i.e., genetic algorithm, 
particle swarm optimization, random search, random search with dynamic updating) with a non-stochastic 
optimization method (i.e., embedded random forest feature selector followed by a grid search) and a Bayesian 
optimization method (i.e., Tree of Parzen estimators). We use Scikit-Learn (Pedregosa et al., 2011) and HyperOpt 
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(Bergstra et al., 2013) packages for implementing the non-stochastic and Bayesian methods, respectively. All 
stochastic algorithms are implemented by the authors and the code is publicly available at 
https://github.com/rmill040/mlsopt. Experiments are conducted on a M5A 16xlarge EC2 instance with 64 CPUs using 
Amazon Web Services.  
 
Data 
 
We simulate four binary classification data sets with varying numbers of features and relevant features: (1) 200 
features with 20 relevant (sim200-20), (2) 200 features with 2 relevant (sim200-2), (3) 500 features with 50 relevant 
(sim500-50), and (4) 500 features with 5 relevant (sim500-5). All data sets are generated with 100 samples and 
approximately balanced class distributions. In addition, we use 11 standard benchmark data sets from the ASU feature 
selection website (Li et al., 2016a) and the UCI repository (Lichman, 2013). The data span both low-dimensional and 
high-dimensional regimes and binary and multiclass outcomes. See Table 1 for a summary of the experimental data. 
 

Table 1. Summary of Experimental Data Sets 
 

Name Samples Features Classes 
AALMAL      72   7,129   2 
cancer     569        30   2 
CLL-SUB-111    111 11,340   3 
Madelon 2,600      500   2 
orlraws10P    100 10,304 10 
pixraw10P    100 10,000   2 
spam 4,601        57   2 
TOX-171    171   5,748   4 
warpAR10P    130   2,400 10 
warpPIE10P    210   2,420 10 
Yale    165   1,024 15 
sim200-2*    100      200   2 
sim200-20*    100      200   2 
sim500-5*    100      500   2 
sim500-50*    100      500   2 
* Simulated data. 

 
Model and Hyperparameter Distributions 
We use a gradient boosted tree model as the machine learning classifier. Gradient boosted models are supervised 
learning models that are built in a sequential manner using weak learners, such as shallow decision trees (Breiman et 
al., 1984), to form an ensemble of weak prediction models (Friedman, 2001). The XGBoost (Chen & Guestrin, 2016) 
package is used for the implementation of gradient boosted trees. The statistical distributions of the 14 
hyperparameters for optimization are presented in Table 2. In larger search spaces, we use log-based distributions to 
enable more efficient searching.  
 
Feature Selection Distributions 
We use independent and identically distributed Bernoulli distributions with success probability of 0.5 to select each 
feature. In other words, each feature has a 50/50 chance of being selected as a feature for inclusion in the model.  
 
Experimental Algorithms and Settings 
We compare the performance and compute time for six algorithms on the simulated and real-world data sets. For all 
stochastic and Bayesian algorithms, a budget of 200 parameter configurations or iterations is set. For the feature 
selection with grid search algorithm, given that the number of configurations is based on the Cartesian product of a 
finite hyperparameter grid, the actual number of parameter configurations evaluated is 216, but relevant compute 
time metrics are adjusted to reflect the approximate time for running 200 candidates.  
 
For random search algorithms, genetic algorithms, and particle swarm algorithms, an initial 40 configurations are 
generated using the same random seed, and five rounds of updating are run for a total of 200 configurations 
evaluated. As such, since these algorithms initialize with the same candidate solutions, they can be compared to  
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Table 2. Distribution of Hyperparameters for Gradient Boosted Tree Classifier 
 

Hyperparameter Distribution Lower Bound Upper Bound 
n_estimators qUniform(q=50) 50 1000 
max_depth qUniform(q=1) 1 11 
min_child_weight qUniform(q=1) 1 20 
max_delta_step qUniform(q=1) 0 3 
learning_rate LogUniform 0.001 0.5 
subsample LogUniform 0.50 1.0 
colsample_bytree LogUniform 0.50 1.0 
colsample_bylevel LogUniform 0.50 1.0 
colsample_bynode LogUniform 0.50 1.0 
gamma LogUniform 0.0001 5.0 
reg_alpha LogUniform 0.0001 1.0 
reg_lambda LogUniform 1.0 4.0 
base_score LogUniform 0.01 0.99 
scale_pos_weight LogUniform 0.1 10.0 
Note. qUniform is sampled as round(value/q)*q, where value ~ Uniform(0, 1). The 
lower and upper bounds of LogUniform distributions are actually based on the log of 
the bound, but the log is omitted for readability. 

 
determine the effectiveness of searching for solutions in high-dimensional parameter spaces. A description of each 
experimental algorithm is presented below.  
 
A 5-fold stratified cross-validation procedure is used to evaluate the solutions and the classification accuracy is the 
selected performance metric. The best parameter configuration ID and total compute times are also collected to 
evaluate the effectiveness of each algorithm.  
 
Feature Selection with Grid Search (FSGS) 
We use an embedded feature selector (random forests) to first select features and then a grid search to select the 
optimal hyperparameters. Specifically, we use a random forest with 50 trees, a max depth of 7, and adjustments for 
balanced class weights. The hyperparameter grid for the six selected hyperparameters is presented in Table 3. 
 

Table 3. Grid of Hyperparameters for Gradient Boosted Tree Classifier 
 

Hyperparameter Grid 
n_estimators [100, 500, 1000] 
max_depth [1, 6, 11] 
learning_rate [0.1, 0.01] 
subsample [0.80, 1.0] 
colsample_bytree [0.80, 1.0] 
base_score [0.2, 0.5, 0.8] 

 
Tree of Parzen Estimators (TPE) 
We use the HyperOpt implementation of the TPE algorithm. The TPE algorithm is a sequential model-based 
optimization (SMBO) using TPE to select optimal configurations. SMBO methods sequentially construct models to 
approximate the performance of untested parameter configurations based on the performance of already evaluated 
configurations, and then subsequently choose new configurations to test based on this model. More specifically, the 
TPE approach models 𝑃(𝐱|𝑦) and 𝑃(𝑦), where 𝐱 represents the parameter configurations (i.e., selected features and 
hyperparameters) and 𝑦 the associated accuracy score. 𝑃(𝐱|𝑦) is modeled by transforming the generative process of 
hyperparameters, replacing the distributions of the configuration prior with non-parametric densities (Bergstra et al., 
2013). 
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Random Search (RS) 
We use a vanilla implementation of random search for joint optimization of feature selection and hyperparameter 
tuning. The algorithm simply generates a parameter configuration using the predefined statistical distributions and 
evaluates the performance.  
 
Random Search with Dynamic Updating (RSDU) 
As described earlier, we develop a modification to the random search algorithm by using dynamic distribution 
updating. The algorithm is implemented as follows: 

1. Initialize 40 parameter configurations using random sampling. 
2. Evaluate parameter configurations using cross-validation. 
3. Select top 50% of best solutions and update statistical distributions. 

a. For feature distributions, selection probabilities are updated as the proportion of times a feature 
appears in the top 50% of solutions. We also set a muting threshold where features with an 
updated selection probability less than 0.25 are excluded for future evaluations. 

b. For hyperparameter distributions, the lower and upper bounds are updated based on the lowest and 
highest sampled values for each hyperparameter. This allows the originally wide statistical 
distributions to become tighter as the search progresses. 

4. Sample 40 new parameter configurations based on updated statistical distributions. 
5. Repeat steps 2-4 five times for a total of 200 tested configurations. 

 
Figure 1 presents an example run comparing RS with RSDU with 10 iterations and 10 candidates at each iteration. 
Note, the bottom plot demonstrates the effect of distribution updating as the search progresses. 
 

 
 

Figure 1.  Hyperparameter Optimization Comparing Random Search  
with Dynamic Updating and without Dynamic Updating  

 
 
Genetic Algorithm (GA) 
We use a common variant of the GA for joint optimization of feature selection and hyperparameter tuning. The 
algorithm is implemented as follows: 

1. Initialize 40 chromosomes’ genes using random sampling. 
2. Evaluate chromosomes’ fitness using cross-validation. 
3. Perform 3-way tournament selection to obtain 40 new parent chromosomes. 
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4. Perform uniform crossover to obtain new population of 40 chromosomes. 
5. Perform mutation on new population. 
6. Repeat steps 2-5 for five iterations for a total of 200 tested configurations. 

 
Particle Swarm Optimization (PSO) 
We use a basic variant of the PSO algorithm for joint optimization of feature selection and hyperparameter tuning. 
The algorithm is implemented as follows: 

1. Initialize 40 particles’ positions and velocities using random sampling. 
2. Initialize 40 particles’ best positions as starting positions and update the swarm’s best position. 
3. Evaluate particles’ configurations using cross-validation. 
4. Update particles’ velocities, particles’ best positions, and swarm’s best position. 
5. Repeat steps 3-4 for five iterations for a total of 200 tested configurations. 

 
Results 
 
Results for classification accuracy by experimental data set and algorithm are presented in Table 4. With regards to  
 

Table 4. Classification Accuracy by Experimental Data Set and Algorithm 
 

 Algorithm 
Name FSGS TPE RS RSDU GA PSO 

AALMAL .9457 1.0000 .9867 .9733 .9724   .9867 
cancer  .9543   .9719 .9614 .9719 .9684   .9684 
CLL-SUB-111 .8198   .8656 .8379 .8557 .8557   .8289 
Madelon .8542   .8246 .8096 .8131 .7788   .6912 
orlraws10P .9300   .9900 .9900 .9900 .9900   .9900 
pixraw10P .9400   .9900 .9900 .9900 .9900 1.0000 
spam .9472   .9500 .9315 .9404 .9409   .9233 
TOX-171 .8190   .8832 .8714 .8714 .8657   .8894 
warpAR10P .8769   .8846 .8615 .8615 .8615   .9077 
warpPIE10P .9667 1.0000 .9952 .9952 .9905 1.0000 
Yale .7273   .7758 .7455 .7455 .7697   .8061 
sim200-2* .9100   .9100 .8900 .8900 .9100   .8700 
sim200-20* .7400   .7700 .7600 .7300 .7800   .7200 
sim500-5* .9300   .9400 .9500 .9500 .8900   .9100 
sim500-50* .6100   .6300 .5800 .5600 .5900   .6200 
Mean .8647 .8924 .8774 .8759 .8769 .8741 
SD .1104 .1060 .1173 .1129 .1118 .1196 
Best Algorithma 2 8 2 2 3 6 
Note. In each row, bold text indicates the best metric.  
* Simulated data. 
a Number of times algorithm has highest metric; numbers do not sum to 15 because of ties in 
some data sets. 

 
classification accuracy, the TPE obtained the highest classification accuracy of 89.24% and the FSGS obtained the 
lowest classification accuracy of 86.47%. The PSO, GA, RS, and RSDU performed similarly with classification 
accuracies of approximately 87-88%. Overall, an analysis of variance (ANOVA) model reveals that these 
classification accuracies are not significantly different, F(5, 84) = 0.09, p = .993.  
 
For compute times (in minutes), the PSO obtained the lowest compute time of 0.82 minutes, whereas, the TPE 
obtained the highest compute time of 47.52 minutes. The longer compute times for TPE was expected, however, 
these times are also based on using 64 threads in the XGBoost classifier model. For computing environments with 
less resources, these compute times would noticeably increase. Overall, an ANOVA model reveals that these 
compute times are significantly different, F(5, 84) = 11.25, p < .0001. Tukey’s pairwise comparisons reveal that 
among the 15 algorithm comparisons, each non-Bayesian algorithm has significantly lower compute times than the 
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TPE algorithm (p = .001). These differences highlight the efficiency that parallel computing has on searching large 
parameter spaces. See Table 5 for a summary of results. 
 

Table 5. Compute Time in Minutes by Experimental Data Set and Algorithm 
 

 Algorithm 
Name FSGSa TPE RS RSDU GA PSO 

AALMAL 0.19    55.33   0.91   0.99   0.91 0.22 
cancer  0.16     3.88   0.13   0.17   0.13 0.15 
CLL-SUB-111 1.19 121.87   8.00   9.28   8.67 0.93 
Madelon 5.73   16.77   3.99   3.93   1.45 0.40 
orlraws10P 2.47 137.09 16.12 15.75 11.69 3.27 
pixraw10P 2.03 145.91 15.23 15.37   8.44 1.80 
spam 1.49    9.70   1.03   0.93   0.66 0.25 
TOX-171 4.43   78.07   8.44   9.57   3.73 1.13 
warpAR10P 3.67   38.52   4.56   5.24   4.25 1.47 
warpPIE10P 5.01   49.74   7.50   8.99   3.53 0.87 
Yale 5.26   35.29   3.61   3.51   2.62 1.31 
sim200-2* 0.14    4.08   0.14   0.16   0.13 0.14 
sim200-20* 0.13    4.15   0.12   0.16   0.12 0.14 
sim500-5* 0.24    6.62   0.21   0.22   0.19 0.15 
sim500-50* 0.29    5.85   0.21   0.21   0.16 0.14 
Mean 2.16 47.52   4.68   4.97   3.11 0.82 
SD 2.11 50.65   5.39   5.54   3.71 0.88 
Best Algorithmb 2 0 2 0 3 10 
Note. In each row, bold text indicates the best metric.  
* Simulated data. 
a Given that the actual number of iterations is 216, numbers are adjusted to approximate the 
time for running 200 iterations using value*(200/216). 
b Number of times algorithm has lowest metric; numbers do not sum to 15 because of ties in 
some data sets. 

 
The percent best iteration metric is calculated as the 100 * best iteration index / 200, where higher scores indicate 
that the search algorithm continued to improve its solution during the search. As can be seen in Table 6, the TPE 
obtained the highest percent of 54.50%, whereas, the RS obtained the lowest percent of 16.50%. Overall, an 
ANOVA reveals that these metrics are significantly different, F(4, 70) = 4.45, p = .003. Tukey’s pairwise 
comparisons reveal that the among the 10 algorithm comparisons, the RS has significantly lower percent best 
iteration metrics compared to both PSO (p = .027) and TPE (p = .008). It is important to mention that these metrics 
appear to be biased downwards due to high signal in the data, where a high classification accuracy (e.g., 99%) is 
found earlier in the search and a more optimal solution is not able to be found as the algorithms continue searching. 
 
CONCLUSION 
 
In this paper, we evaluated approaches to feature selection and hyperparameter optimization using stochastic-based 
algorithms to jointly optimize the search space. The idea is to solve both feature selection and hyperparameter 
tuning in the same algorithm. Our results demonstrate the effectiveness of various stochastic-based algorithms 
across a series of simulated and benchmark data sets and show comparable predictive performance in a fraction of 
the time as commonly used state-of-the-art methods such as Bayesian optimization using TPE. Among the evaluated 
stochastic algorithms, in general, we found that the particle swarm optimization yielded the most optimal results in 
terms of classification accuracies, compute time, and efficiency in searching the parameter spaces.   
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Table 6. Percent Best Iteration by Experimental Data Set and Algorithm 
 

 Algorithm 
Name TPE RS RSDU GA PSO 

AALMAL 34.50 80.50   0.50   0.50 40.50 
cancer  29.00   0.50 80.50 59.00 60.50 
CLL-SUB-111 78.50   0.50 60.50 59.00 80.50 
Madelon 99.00 40.50 80.50 59.00 80.50 
orlraws10P 18.00   0.50   0.50   0.50   0.50 
pixraw10P   7.50   0.50   0.50   0.50   0.50 
spam 89.00   0.50 80.50 78.50 80.50 
TOX-171 61.50   0.50   0.50 39.50 80.50 
warpAR10P 36.50   0.50   0.50 59.00 60.50 
warpPIE10P 31.00 20.50 40.50   0.50   0.50 
Yale 74.00   0.50   0.50 59.00 40.50 
sim200-2* 37.00   0.50   0.50 39.50 60.50 
sim200-20* 82.50 40.50 20.50 59.00 60.50 
sim500-5* 43.50   0.50   0.50 39.50 80.50 
sim500-50* 96.00 60.50   0.50 78.50 20.50 
Mean 54.50 16.50 24.50 42.10 49.83 
SD 29.97 26.40 33.97 28.42 31.05 
Best Algorithma 7 1 2 0 5 
Note. In each row, bold text indicates the best metric.  
* Simulated data. 
a Number of times algorithm has highest metric. 
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