

MODSIM World 2020

2020 Paper No. 24 Page 1 of 10

Stochastic Optimization in Machine Learning Pipelines:

Selecting Features and Hyperparameters

Robert Milletich* Anthony Asmar
 Deloitte Consulting LLP National Institutes of Health
 Richmond, Virginia Bethesda, Maryland
 rmilletich@deloitte.com anthony.asmar@nih.gov

*Corresponding Author: rmilletich@deloitte.com

ABSTRACT

Feature selection and hyperparameter tuning are important components of a machine learning pipeline. In practice,
these components are often optimized independently of each other, for example, first optimizing feature selection and
then optimizing hyperparameters. This results in the complex dependencies between the parameter spaces to be
ignored. To account for such dependencies, Bayesian optimization routines have been developed that explicitly
account for interactions and also uncertainty in the parameter spaces. Although Bayesian approaches are widely used,
a major limitation is the difficulty in parallelizing the computation due to the serial nature of the parameter updates.
To overcome limitations with dependencies in parameter spaces and parallel computing, we demonstrate the
application of stochastic optimization algorithms in jointly optimizing feature selection and hyperparameter tuning on
simulated and benchmark data sets. Specifically, we compare several stochastic algorithms (e.g., random search,
genetic algorithms, particle swarm optimization, random search with dynamic updating) with non-stochastic and
Bayesian algorithms to optimize feature selection and hyperparameter tuning of gradient boosting tree classifiers. Our
results highlight the effectiveness of stochastic optimization for feature selection and hyperparameter tuning across a
variety of data sets, including high-dimensional data and noisy data.

ABOUT THE AUTHORS

Dr. Robert Milletich (Deloitte Consulting LLP) is a senior data scientist in the Analytics and Cognitive practice of
Deloitte Consulting. His current research interests include ensemble learning and machine learning pipeline
optimization. He has a M.S. in Experimental Psychology, M.S. in Applied Mathematics, and a Ph.D. in Psychological
Sciences from Old Dominion University.

Dr. Anthony Asmar (National Institutes of Health) is a postdoctoral fellow in the Stem Cell Biochemistry Unit of
the NIDCR. His current research interests include the intersection of computational biology and bench research for
streamlined disease discovery. He has a M.S. in Biology and a Ph.D. in Biomedical Sciences from Old Dominion
University.

MODSIM World 2020

2020 Paper No. 24 Page 2 of 10

Stochastic Optimization in Machine Learning Pipelines:

Selecting Features and Hyperparameters

Robert Milletich* Anthony Asmar
 Deloitte Consulting LLP National Institutes of Health
 Richmond, Virginia Bethesda, Maryland
 rmilletich@deloitte.com anthony.asmar@nih.gov

*Corresponding Author: rmilletich@deloitte.com

INTRODUCTION

Machine learning has become increasingly popular across many industries and remains one of the most in demand
technologies for businesses. Despite this popularity, however, the process for developing, deploying, and continuously
improving machine learning pipelines is becoming more challenging given complexities with models and the data
they consume (Sculley et al. 2015). A substantive part of developing and maintaining accurate real-world machine
learning systems involves optimizing components of the prediction pipeline. Among these, two important components
are feature selection and hyperparameter tuning. Feature selection, also known as variable selection, is the process of
identifying an optimal subset of relevant features as model inputs. Feature selection techniques are used for several
reasons, including to improve the predictive accuracy and generalization of models by reducing overfitting and
eliminating irrelevant or redundant features, reduce the computational cost and time for model training and inference,
and simplify models to increase interpretability (Colaco et al., 2019; Liu et al., 2010). Hyperparameter tuning is the
process of choosing a set of optimal hyperparameters (i.e., parameter whose value controls the learning process) for a
learning algorithm (Hastie et al., 2009). Similar to feature selection techniques, hyperparameter tuning techniques are
used to primarily improve predictive accuracy and generalization of models by reducing overfitting.

In real-world problems, the parameter spaces for both features and hyperparameters are high dimensional, involve
complex interactions between parameters, and have a large (potentially infinite) number of testable configurations.
For feature spaces, we can easily enumerate the number of testable configurations. Let 𝑓 be the number of features,
then the total number of testable configurations is given by 2!, where 2 denotes the number of scenarios for a feature
being selected (i.e., 1=yes, 0=no). On the contrary, for hyperparameter spaces, the total number of testable
configurations is not always enumerable given that the space can consist of both discrete and continuous parameters.
In the discrete case, we can enumerate the total number of testable configurations. Let 𝑝 be the number of discrete
hyperparameters and ℎ" be the number of discrete values for the 𝑖th hyperparameter, then the total number of testable
configurations is given by the Cartesian product of the 𝑝 individual hyperparameter spaces, ℎ# ∗ ℎ$ ∗ ⋯∗ ℎ%. In the
case with continuous hyperparameters, the number of testable configurations becomes infinite and no longer
enumerable, even with a single continuous hyperparameter.

From an optimization perspective, feature selection and hyperparameter tuning can be viewed as two independent (or
conditionally independent) optimization problems or one joint optimization problem. Given the size of the individual
search spaces, it is clear that the size of the joint search space is significantly larger and more complicated since
parameter dependencies may exist both within and between search spaces. Technically, the search space in the
independent optimization case is a subset of the search space in the joint optimization case. Therefore, theoretically
the solution of joint optimization problem is at least as optimal as the solution of the independent optimization
problem. In practice, however, brute force or exhaustive search algorithms are impractical for both problems and a
global optimum is rarely obtained. Existing algorithms for large parameter spaces can only explore a subset of the
search space due to computational complexity constraints. Importantly, these constraints lead to local optimum
solutions for both types of problems, which can explain why joint optimization does not always outperform
independent optimization.

MODSIM World 2020

2020 Paper No. 24 Page 3 of 10

Problem Statement

To formally define the problem, let the 𝐱! ∈ ℝ! be a 𝑓-dimensional vector of binary values for feature inclusion (i.e.,
1=yes, 0=no) and 𝐱& ∈ ℝ& be a ℎ-dimensional vector of continuous values for hyperparameters. The joint optimization
problem of selecting features and hyperparameters is the maximum for a function 𝑓:	ℝ!'& → ℝ,

𝐱(%) = arg	max
𝐱∈ℝ!"#

𝑓(𝐱), (1)

where 𝑓 is often a function that returns a model performance metric such as average classification accuracy from
cross-validation. Techniques for solving Equation (1) can be categorized into three classes: (1) non-stochastic
optimization, (2) Bayesian optimization, and (3) stochastic optimization. Non-stochastic optimization techniques
decouple the joint optimization given by Equation (1) and focus on independently optimizing feature selection first
(selecting 𝐱!), then optimizing hyperparameters (selecting 𝐱&), or vice-versa. A commonly used approach that is easy
to implement is to first select relevant features using a random forest (Breiman, 2001) and then optimize a model’s
hyperparameters using a grid search. A grid search approximates a brute force search for hyperparameter tuning by
first discretizing each hyperparameter space of interest and then calculating the Cartesian product of the discretized
spaces to generate testable hyperparameter configurations (Bergstra & Bengio, 2012). The decoupling of optimization
problems offers flexibility such that different feature selection techniques (e.g., filter methods, wrapper methods,
embedded methods) can be combined with different hyperparameter tuning techniques (e.g., random search, Bayesian
optimization). A notable limitation, however, is that the decoupling ignores complex dependencies between the feature
and hyperparameter spaces, which may result in unstable local optimum solutions.

In an effort to explicitly account for model dependencies in parameter spaces, Bayesian optimization techniques can
be used to jointly model the feature and hyperparameter spaces. These techniques efficiently trade off exploration
and exploitation of the parameter space to identify a configuration that best optimizes some overall evaluation
metric (Snoek et al., 2012). Among the several popular implementations, the most popular is the Tree of Parzen
Estimators (TPE) as described in Bergstra et al. 2013. Although Bayesian techniques have been shown to have
excellent performance in practice, a major limitation is the difficulty in parallelizing the search evaluation due to the
serial nature of the parameter updates (Li et al., 2016b). As such, to overcome limitations with dependencies in
parameter spaces and parallel search evaluation, stochastic optimization techniques can be leveraged.

Stochastic optimization methods generate and use random variables as candidate solutions to Equation (1). In the
simplest implementation, random search (Bergstra & Bengio, 2012) repeatedly draws candidate solutions for a finite
number of iterations and the best solution is kept as the optimal configuration. Random search has been shown to
outperform all other methods, including TPE; however, it does so at the expense of computing time (Li et al.,
2016b). Other stochastic algorithms, such as genetic algorithms and particle swarm optimization, seek to improve on
random search by using meta-heuristics to more efficiently search through the parameter space after evaluating an
initial set of random candidates. The literature has shown the success of these algorithms in solving feature selection
tasks and hyperparameter optimization tasks (Kabir et al., 2011; Lane et al., 2013; Li et al., 2009; Xue et al., 2013),
yet little research exists on the effectiveness of such algorithms for tasks such as joint optimization in machine
learning pipelines.

This paper evaluates the effectiveness of stochastic algorithms for joint optimization of feature selection and
hyperparameter tuning. We introduce a modification to the random search algorithm using dynamic updating. In
short, random search is run for a predefined number of iterations, then the feature selection and hyperparameter
distributions are updated based on the past configuration results, and a new set of candidate solutions are sampled
from their updated distributions.

EXPERIMENTS

In this section, we evaluate stochastic optimization methods for feature selection and hyperparameter tuning on both
simulated and real-world data sets. Specifically, we compare stochastic optimization methods (i.e., genetic algorithm,
particle swarm optimization, random search, random search with dynamic updating) with a non-stochastic
optimization method (i.e., embedded random forest feature selector followed by a grid search) and a Bayesian
optimization method (i.e., Tree of Parzen estimators). We use Scikit-Learn (Pedregosa et al., 2011) and HyperOpt

MODSIM World 2020

2020 Paper No. 24 Page 4 of 10

(Bergstra et al., 2013) packages for implementing the non-stochastic and Bayesian methods, respectively. All
stochastic algorithms are implemented by the authors and the code is publicly available at
https://github.com/rmill040/mlsopt. Experiments are conducted on a M5A 16xlarge EC2 instance with 64 CPUs using
Amazon Web Services.

Data

We simulate four binary classification data sets with varying numbers of features and relevant features: (1) 200
features with 20 relevant (sim200-20), (2) 200 features with 2 relevant (sim200-2), (3) 500 features with 50 relevant
(sim500-50), and (4) 500 features with 5 relevant (sim500-5). All data sets are generated with 100 samples and
approximately balanced class distributions. In addition, we use 11 standard benchmark data sets from the ASU feature
selection website (Li et al., 2016a) and the UCI repository (Lichman, 2013). The data span both low-dimensional and
high-dimensional regimes and binary and multiclass outcomes. See Table 1 for a summary of the experimental data.

Table 1. Summary of Experimental Data Sets

Name Samples Features Classes
AALMAL 72 7,129 2
cancer 569 30 2
CLL-SUB-111 111 11,340 3
Madelon 2,600 500 2
orlraws10P 100 10,304 10
pixraw10P 100 10,000 2
spam 4,601 57 2
TOX-171 171 5,748 4
warpAR10P 130 2,400 10
warpPIE10P 210 2,420 10
Yale 165 1,024 15
sim200-2* 100 200 2
sim200-20* 100 200 2
sim500-5* 100 500 2
sim500-50* 100 500 2
* Simulated data.

Model and Hyperparameter Distributions
We use a gradient boosted tree model as the machine learning classifier. Gradient boosted models are supervised
learning models that are built in a sequential manner using weak learners, such as shallow decision trees (Breiman et
al., 1984), to form an ensemble of weak prediction models (Friedman, 2001). The XGBoost (Chen & Guestrin, 2016)
package is used for the implementation of gradient boosted trees. The statistical distributions of the 14
hyperparameters for optimization are presented in Table 2. In larger search spaces, we use log-based distributions to
enable more efficient searching.

Feature Selection Distributions
We use independent and identically distributed Bernoulli distributions with success probability of 0.5 to select each
feature. In other words, each feature has a 50/50 chance of being selected as a feature for inclusion in the model.

Experimental Algorithms and Settings
We compare the performance and compute time for six algorithms on the simulated and real-world data sets. For all
stochastic and Bayesian algorithms, a budget of 200 parameter configurations or iterations is set. For the feature
selection with grid search algorithm, given that the number of configurations is based on the Cartesian product of a
finite hyperparameter grid, the actual number of parameter configurations evaluated is 216, but relevant compute
time metrics are adjusted to reflect the approximate time for running 200 candidates.

For random search algorithms, genetic algorithms, and particle swarm algorithms, an initial 40 configurations are
generated using the same random seed, and five rounds of updating are run for a total of 200 configurations
evaluated. As such, since these algorithms initialize with the same candidate solutions, they can be compared to

MODSIM World 2020

2020 Paper No. 24 Page 5 of 10

Table 2. Distribution of Hyperparameters for Gradient Boosted Tree Classifier

Hyperparameter Distribution Lower Bound Upper Bound
n_estimators qUniform(q=50) 50 1000
max_depth qUniform(q=1) 1 11
min_child_weight qUniform(q=1) 1 20
max_delta_step qUniform(q=1) 0 3
learning_rate LogUniform 0.001 0.5
subsample LogUniform 0.50 1.0
colsample_bytree LogUniform 0.50 1.0
colsample_bylevel LogUniform 0.50 1.0
colsample_bynode LogUniform 0.50 1.0
gamma LogUniform 0.0001 5.0
reg_alpha LogUniform 0.0001 1.0
reg_lambda LogUniform 1.0 4.0
base_score LogUniform 0.01 0.99
scale_pos_weight LogUniform 0.1 10.0
Note. qUniform is sampled as round(value/q)*q, where value ~ Uniform(0, 1). The
lower and upper bounds of LogUniform distributions are actually based on the log of
the bound, but the log is omitted for readability.

determine the effectiveness of searching for solutions in high-dimensional parameter spaces. A description of each
experimental algorithm is presented below.

A 5-fold stratified cross-validation procedure is used to evaluate the solutions and the classification accuracy is the
selected performance metric. The best parameter configuration ID and total compute times are also collected to
evaluate the effectiveness of each algorithm.

Feature Selection with Grid Search (FSGS)
We use an embedded feature selector (random forests) to first select features and then a grid search to select the
optimal hyperparameters. Specifically, we use a random forest with 50 trees, a max depth of 7, and adjustments for
balanced class weights. The hyperparameter grid for the six selected hyperparameters is presented in Table 3.

Table 3. Grid of Hyperparameters for Gradient Boosted Tree Classifier

Hyperparameter Grid
n_estimators [100, 500, 1000]
max_depth [1, 6, 11]
learning_rate [0.1, 0.01]
subsample [0.80, 1.0]
colsample_bytree [0.80, 1.0]
base_score [0.2, 0.5, 0.8]

Tree of Parzen Estimators (TPE)
We use the HyperOpt implementation of the TPE algorithm. The TPE algorithm is a sequential model-based
optimization (SMBO) using TPE to select optimal configurations. SMBO methods sequentially construct models to
approximate the performance of untested parameter configurations based on the performance of already evaluated
configurations, and then subsequently choose new configurations to test based on this model. More specifically, the
TPE approach models 𝑃(𝐱|𝑦) and 𝑃(𝑦), where 𝐱 represents the parameter configurations (i.e., selected features and
hyperparameters) and 𝑦 the associated accuracy score. 𝑃(𝐱|𝑦) is modeled by transforming the generative process of
hyperparameters, replacing the distributions of the configuration prior with non-parametric densities (Bergstra et al.,
2013).

MODSIM World 2020

2020 Paper No. 24 Page 6 of 10

Random Search (RS)
We use a vanilla implementation of random search for joint optimization of feature selection and hyperparameter
tuning. The algorithm simply generates a parameter configuration using the predefined statistical distributions and
evaluates the performance.

Random Search with Dynamic Updating (RSDU)
As described earlier, we develop a modification to the random search algorithm by using dynamic distribution
updating. The algorithm is implemented as follows:

1. Initialize 40 parameter configurations using random sampling.
2. Evaluate parameter configurations using cross-validation.
3. Select top 50% of best solutions and update statistical distributions.

a. For feature distributions, selection probabilities are updated as the proportion of times a feature
appears in the top 50% of solutions. We also set a muting threshold where features with an
updated selection probability less than 0.25 are excluded for future evaluations.

b. For hyperparameter distributions, the lower and upper bounds are updated based on the lowest and
highest sampled values for each hyperparameter. This allows the originally wide statistical
distributions to become tighter as the search progresses.

4. Sample 40 new parameter configurations based on updated statistical distributions.
5. Repeat steps 2-4 five times for a total of 200 tested configurations.

Figure 1 presents an example run comparing RS with RSDU with 10 iterations and 10 candidates at each iteration.
Note, the bottom plot demonstrates the effect of distribution updating as the search progresses.

Figure 1. Hyperparameter Optimization Comparing Random Search
with Dynamic Updating and without Dynamic Updating

Genetic Algorithm (GA)
We use a common variant of the GA for joint optimization of feature selection and hyperparameter tuning. The
algorithm is implemented as follows:

1. Initialize 40 chromosomes’ genes using random sampling.
2. Evaluate chromosomes’ fitness using cross-validation.
3. Perform 3-way tournament selection to obtain 40 new parent chromosomes.

MODSIM World 2020

2020 Paper No. 24 Page 7 of 10

4. Perform uniform crossover to obtain new population of 40 chromosomes.
5. Perform mutation on new population.
6. Repeat steps 2-5 for five iterations for a total of 200 tested configurations.

Particle Swarm Optimization (PSO)
We use a basic variant of the PSO algorithm for joint optimization of feature selection and hyperparameter tuning.
The algorithm is implemented as follows:

1. Initialize 40 particles’ positions and velocities using random sampling.
2. Initialize 40 particles’ best positions as starting positions and update the swarm’s best position.
3. Evaluate particles’ configurations using cross-validation.
4. Update particles’ velocities, particles’ best positions, and swarm’s best position.
5. Repeat steps 3-4 for five iterations for a total of 200 tested configurations.

Results

Results for classification accuracy by experimental data set and algorithm are presented in Table 4. With regards to

Table 4. Classification Accuracy by Experimental Data Set and Algorithm

 Algorithm
Name FSGS TPE RS RSDU GA PSO

AALMAL .9457 1.0000 .9867 .9733 .9724 .9867
cancer .9543 .9719 .9614 .9719 .9684 .9684
CLL-SUB-111 .8198 .8656 .8379 .8557 .8557 .8289
Madelon .8542 .8246 .8096 .8131 .7788 .6912
orlraws10P .9300 .9900 .9900 .9900 .9900 .9900
pixraw10P .9400 .9900 .9900 .9900 .9900 1.0000
spam .9472 .9500 .9315 .9404 .9409 .9233
TOX-171 .8190 .8832 .8714 .8714 .8657 .8894
warpAR10P .8769 .8846 .8615 .8615 .8615 .9077
warpPIE10P .9667 1.0000 .9952 .9952 .9905 1.0000
Yale .7273 .7758 .7455 .7455 .7697 .8061
sim200-2* .9100 .9100 .8900 .8900 .9100 .8700
sim200-20* .7400 .7700 .7600 .7300 .7800 .7200
sim500-5* .9300 .9400 .9500 .9500 .8900 .9100
sim500-50* .6100 .6300 .5800 .5600 .5900 .6200
Mean .8647 .8924 .8774 .8759 .8769 .8741
SD .1104 .1060 .1173 .1129 .1118 .1196
Best Algorithma 2 8 2 2 3 6
Note. In each row, bold text indicates the best metric.
* Simulated data.
a Number of times algorithm has highest metric; numbers do not sum to 15 because of ties in
some data sets.

classification accuracy, the TPE obtained the highest classification accuracy of 89.24% and the FSGS obtained the
lowest classification accuracy of 86.47%. The PSO, GA, RS, and RSDU performed similarly with classification
accuracies of approximately 87-88%. Overall, an analysis of variance (ANOVA) model reveals that these
classification accuracies are not significantly different, F(5, 84) = 0.09, p = .993.

For compute times (in minutes), the PSO obtained the lowest compute time of 0.82 minutes, whereas, the TPE
obtained the highest compute time of 47.52 minutes. The longer compute times for TPE was expected, however,
these times are also based on using 64 threads in the XGBoost classifier model. For computing environments with
less resources, these compute times would noticeably increase. Overall, an ANOVA model reveals that these
compute times are significantly different, F(5, 84) = 11.25, p < .0001. Tukey’s pairwise comparisons reveal that
among the 15 algorithm comparisons, each non-Bayesian algorithm has significantly lower compute times than the

MODSIM World 2020

2020 Paper No. 24 Page 8 of 10

TPE algorithm (p = .001). These differences highlight the efficiency that parallel computing has on searching large
parameter spaces. See Table 5 for a summary of results.

Table 5. Compute Time in Minutes by Experimental Data Set and Algorithm

 Algorithm
Name FSGSa TPE RS RSDU GA PSO

AALMAL 0.19 55.33 0.91 0.99 0.91 0.22
cancer 0.16 3.88 0.13 0.17 0.13 0.15
CLL-SUB-111 1.19 121.87 8.00 9.28 8.67 0.93
Madelon 5.73 16.77 3.99 3.93 1.45 0.40
orlraws10P 2.47 137.09 16.12 15.75 11.69 3.27
pixraw10P 2.03 145.91 15.23 15.37 8.44 1.80
spam 1.49 9.70 1.03 0.93 0.66 0.25
TOX-171 4.43 78.07 8.44 9.57 3.73 1.13
warpAR10P 3.67 38.52 4.56 5.24 4.25 1.47
warpPIE10P 5.01 49.74 7.50 8.99 3.53 0.87
Yale 5.26 35.29 3.61 3.51 2.62 1.31
sim200-2* 0.14 4.08 0.14 0.16 0.13 0.14
sim200-20* 0.13 4.15 0.12 0.16 0.12 0.14
sim500-5* 0.24 6.62 0.21 0.22 0.19 0.15
sim500-50* 0.29 5.85 0.21 0.21 0.16 0.14
Mean 2.16 47.52 4.68 4.97 3.11 0.82
SD 2.11 50.65 5.39 5.54 3.71 0.88
Best Algorithmb 2 0 2 0 3 10
Note. In each row, bold text indicates the best metric.
* Simulated data.
a Given that the actual number of iterations is 216, numbers are adjusted to approximate the
time for running 200 iterations using value*(200/216).
b Number of times algorithm has lowest metric; numbers do not sum to 15 because of ties in
some data sets.

The percent best iteration metric is calculated as the 100 * best iteration index / 200, where higher scores indicate
that the search algorithm continued to improve its solution during the search. As can be seen in Table 6, the TPE
obtained the highest percent of 54.50%, whereas, the RS obtained the lowest percent of 16.50%. Overall, an
ANOVA reveals that these metrics are significantly different, F(4, 70) = 4.45, p = .003. Tukey’s pairwise
comparisons reveal that the among the 10 algorithm comparisons, the RS has significantly lower percent best
iteration metrics compared to both PSO (p = .027) and TPE (p = .008). It is important to mention that these metrics
appear to be biased downwards due to high signal in the data, where a high classification accuracy (e.g., 99%) is
found earlier in the search and a more optimal solution is not able to be found as the algorithms continue searching.

CONCLUSION

In this paper, we evaluated approaches to feature selection and hyperparameter optimization using stochastic-based
algorithms to jointly optimize the search space. The idea is to solve both feature selection and hyperparameter
tuning in the same algorithm. Our results demonstrate the effectiveness of various stochastic-based algorithms
across a series of simulated and benchmark data sets and show comparable predictive performance in a fraction of
the time as commonly used state-of-the-art methods such as Bayesian optimization using TPE. Among the evaluated
stochastic algorithms, in general, we found that the particle swarm optimization yielded the most optimal results in
terms of classification accuracies, compute time, and efficiency in searching the parameter spaces.

MODSIM World 2020

2020 Paper No. 24 Page 9 of 10

Table 6. Percent Best Iteration by Experimental Data Set and Algorithm

 Algorithm
Name TPE RS RSDU GA PSO

AALMAL 34.50 80.50 0.50 0.50 40.50
cancer 29.00 0.50 80.50 59.00 60.50
CLL-SUB-111 78.50 0.50 60.50 59.00 80.50
Madelon 99.00 40.50 80.50 59.00 80.50
orlraws10P 18.00 0.50 0.50 0.50 0.50
pixraw10P 7.50 0.50 0.50 0.50 0.50
spam 89.00 0.50 80.50 78.50 80.50
TOX-171 61.50 0.50 0.50 39.50 80.50
warpAR10P 36.50 0.50 0.50 59.00 60.50
warpPIE10P 31.00 20.50 40.50 0.50 0.50
Yale 74.00 0.50 0.50 59.00 40.50
sim200-2* 37.00 0.50 0.50 39.50 60.50
sim200-20* 82.50 40.50 20.50 59.00 60.50
sim500-5* 43.50 0.50 0.50 39.50 80.50
sim500-50* 96.00 60.50 0.50 78.50 20.50
Mean 54.50 16.50 24.50 42.10 49.83
SD 29.97 26.40 33.97 28.42 31.05
Best Algorithma 7 1 2 0 5
Note. In each row, bold text indicates the best metric.
* Simulated data.
a Number of times algorithm has highest metric.

REFERENCES

Bergstra, J. & Bengio, Y. (2012). Random search for hyper-parameter optimization. The Journal of Machine

Learning Research, 13(1), 281-305.
Bergstra, J., Yamins, D., & Cox, D. D. (2013). Making a science of model search: Hyperparameter pptimization in

hundreds of dimensions for vision architectures. To appear in Proceedings of the 30th International
Conference on Machine Learning (ICML 2013).

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont,

CA: Wadsworth.
Chen, T., & Guestrin, C. (preprint 2016). XGBoost: A scalable tree boosting system arXiv:1603.02754.
Colaco, S., Kumar, S., Tamang, A., & Biju, V. G. (2019). A review on feature selection algorithms. In Shetty N.,

Patnaik L., Nagaraj H., Hamsavath P., Nalini N. (eds) Emerging Research in Computing, Information,
Communication and Applications. Advances in Intelligent Systems and Computing, Volume 906 (pp. 133-
153). Singapore: Springer.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5),
1189-1232.

Gheyas., I. & Smith, L. S. (2010). Feature subset selection in large dimensionality domains. Pattern Recognition,
43(1), 5-13.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). Elements of statistical learning (2nd ed.). New York, NY:
Springer.

Kabir, M. M., Islam, M. M., & Murase, K. (2011). A new local search based hybrid genetic algorithm for feature
selection. Neurocomputing, 74, 2194-2928.

Lane, M. C., Xue, B., Liu, I., & Zhang, M. (2013). Particle swarm optimization and statistical clustering for feature
selection. In Advances in artificial intelligence (pp. 214-220). Cham, Switzerland: Springer.

Lichman, M. (2013). UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.
Li, J., Cheng, K., Wang, S., Morstatter, F., Robert, T., Tang, J., & Liu, H. (2016a). Feature selection: A data

perspective. arXiv:1601.07996.
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2016b). Hyperband: A novel bandit-based

approach to hyperparameter optimization. arXiv:1603.06560.

MODSIM World 2020

2020 Paper No. 24 Page 10 of 10

Liu, H., & Motoda, H. (2007). Computational methods of feature selection. Chapman and Hall/CRC Press.
Liu, H., Motoda, H., Setiono, R., & Zhao, Z. (2010). Feature selection: An ever-evolving frontier in data mining.

Journal of Machine. Learning. Research Proceeding Track, 10, 4-13.
Li, Y., Zhang, S., & Zeng, X. (2009). Research of multi-population agent genetic algorithm for feature

selection. Expert Systems with Applications, 36(9), 11570-11581.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., …, Duchesnay, E. (2011).

Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
Sculley, D., Holt, G., Golovin, D., Davydov, E., Philips, T., Ebner, D., … & Dennison, D. (2015). Hidden technical

debt in machine learning systems. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2 (pp. 2503-2511). Cambridge, MA: MIT Press.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. In
Advances in neural information processing systems (pp. 2951–2959).

Xue, B., Zhang, M. J., & Browne, W. N. (2013). Particle swarm optimization for feature selection in classification: A
multi-objective approach. IEEE Transactions Cybernetics, 43(6), 1656-1671.

