

MODSIM World 2015

2015 Paper No. 76 Page 1 of 11

Object Oriented Population Generation

Jacob Barhak

Austin Texas

jacob.barhak@gmail.com

ABSTRACT

Computational population generation produces individual records using Monte-Carlo techniques. Generation rules

for each individual characteristic potentially depend on other characteristics which create a dependency tree for

computing each individual. In addition evolutionary computation objectives define selection criteria of individuals

to match aggregate population goals. These elements repeat many times when creating new populations, therefore

code reusability is important to simplify data entry. Moreover it allows exchanging computational building blocks to

create simulation variations for sensitivity analysis or hypothesis testing which are essential for reference modeling.

This paper describes an object oriented approach where population building blocks can be inherited to build a

population that later can be rebuilt with variations. The paper describes the modular modeling theory with some

basic examples.

ABOUT THE AUTHORS

Jacob Barhak specializes in chronic disease modeling with emphasis on using computational technological

solutions. The Reference Model for disease progression was self developed by Dr. Barhak as a freelancer.

Previously Dr. Barhak headed the Michigan Model for Diabetes computing team 2006-2012. A major part of this

position involved developing the software environment and the Michigan Model for Diabetes. Dr. Barhak has

diverse international background in engineering and computing science. For additional information please visit

http://sites.google.com/site/jacobbarhak/.

http://sites.google.com/site/jacobbarhak/

MODSIM World 2015

2015 Paper No. 76 Page 2 of 11

Object Oriented Population Generation

Jacob Barhak

Austin Texas

jacob.barhak@gmail.com

INTRODUCTION

A generated population of individuals with multiple characteristics is a common input to Micro-Simulation, which is

becoming increasingly popular with the increase in computing power (Moore 1965, Wikipedia Online C). The

abundance of computing power, however, allows modelers to test many hypotheses and scenarios. The Reference

Model (Barhak & Garrett 2014A, Barhak 2012A, 2012B, 2012C, 2012D, 2012E, 2013A, 2013B, 2013C, 2013D,

2014B, 2014C, 2014D) is a good example that demonstrates how different models, populations, and hypotheses are

combined to create many scenarios for disease progression. This trend of reference modeling was identified by (Tolk

et al. 2013). Yet even beyond reference modeling, models typically undergo sensitivity analysis where many

scenarios are tested with different parameter values (Hayes et al. 2013).

Many times this requires changing a base building block in simulation such as an initial generated population

characteristic. Since population generation has dependencies, there is a need to replace foundation blocks during

population generation without difficulty. An object oriented approach towards population generation allows easily

defining interchangeable population building blocks that can be used in different scenarios.

APPROACH

The base technology for population generation is described in (Barhak 2010, 2013C, 2014B, Barhak & Garrett

2014A, Barhak @ Github Online). Here is a short recap of previous work to allow better understanding of the new

layer.

Parameters
Each individual is defined by a set of parameters. For example Age, Male, Weight, Height, etc. Each such parameter

definition may have validation rules such as being an integer or between certain values. For example, Male is

defined as an integer within the ranges 0 and 1 to represent false and true values.

Rules
Each such parameter used in the population can have a rule attached to it. The rule may be a random function that

depends on other parameters. The system knows to resolve the calculation order of these rules according to

dependencies. This frees the user to consider each parameter definition at a time – which simplifies programming.

For example, the user can use the rules defined for population A below.

Population A:

Rules:

 Age ~ Gaussian (50 + 2*Male,5)

 Male ~ Bernoulli (0.5)

 Height ~ Gaussian(1.7+0.1*Male,0.1)

 Weight ~ (Age+Uniform(0,20))*(Height-0.75)

In the above example regardless of the order if definition the system will know to calculate the individual parameter

values in the following order: Male, Age, Height, Weight.

Therefore the program that defines the population looks different than common scripts since execution order is

based on dependencies rather than on definition order. This is possible since there is a single expression for each

parameter. We will call this expression a “parameter rule” or “rule” for short to distinguish it from other

expressions.

MODSIM World 2015

2015 Paper No. 76 Page 3 of 11

Note that the rule can reference an auto increment counter system parameter we will name IndividualID. This allows

loading a preset data table to a population where all values are preset. For example this may look like Population B:

Population B:

Rules:

 Age ~ Table ([[Mod(IndividualID,3),[]]], [50,60,40])

In this example, IndividualID will give a different value for each of the first three individuals according to the table.

In past publications, such a population would have been characterized as a data population. In this paper we

generalize population definition and data is considered as a rule defined by an expression using a table function

depending on IndividualID.

Objectives

After individuals are generated Evolutionary Computation (EC) is used. EC selects sub-sets of individuals with

certain characteristics that match desired statistics. These statistics are represented by objectives defined by the

following elements:

 Filter Expression: an expression that is true for each individual the objective applies to – essentially defining a

sub group of interest. Many times no filter is used – indicated all individuals are considered by using a constant

value of 1.

 Statistics Expression: an expression applied on the individual to calculate a single statistical value of interest –

many times the expression consists of a single individual parameter.

 Function: a statistical aggregate function applied on the statistic expression result for all individuals where the

filter expression was not zero. Typically this function is MEAN, STD, or a percentile selected from a list of

supported functions.

 Target Value: A number which the result of the above function should match. This is the number we want to

reach.

 Weight: a number to indicate the relative importance of the objective compared to other objectives.

An example for objectives to match our example is Population C:

Population C:

Objectives:

 Objective #1:

 Filter Criteria: 1

 Statistics Expression: Weight/Height**2

 Function: MEAN

 Target Value: 25

 Weight:1

The above objective makes sure that the mean Body Mass Index (BMI) of the generated population is 25. Once such

an objective is in place, the system would select a sub population of individuals that matches the objective statistics.

Note that this may skew the population. Yet proper definition of objectives will allow correcting skewed generated

populations to match certain criteria, or at least know how well the population is generated within given constraints.

One important use of generating mock populations is to represent clinical trial baselines. Inclusion and exclusion

criteria are modeled as rules and published statistics as objectives. This information exists in clinical trial

publications. Such information is abundant and typically unrestricted. Therefore many populations can be modeled

this way.

HANDLING MULTIPLE POPULATIONS AND FUTURE NEEDS

To efficiently encode many populations and looking towards future functionality there is a need to address the

following issues:

MODSIM World 2015

2015 Paper No. 76 Page 4 of 11

Code Reusability

The use of repeated code between different cohorts of the same population is common. For example, both treatment

arm and placebo arm may contain same initial conditions of disease state such as having diabetes, or may report

duration of diabetes while we are interested in age of diagnosis that requires calculation. These rules can repeat for

each cohort/stratification resulting in extra effort and code duplication that makes changes harder.

Missing Information

Missing information which either was not collected or was unpublished is common. For example, not all trials may

publish statistics such as all cholesterol levels and there may be a need to use Friedewald Equation (Johnson et al.

1997) to calculate the missing cholesterol levels. Also, many conditions and bio-markers are not reported for each

study yet may be required by the system and need to be derived from other sources. For example a study may not

report history of heart disease in the family and such a parameter needs to be derived from another source that

provides a default value.

Hypothesis Handling for use with High Performance Computing (HPC)

Hypotheses include unknown values that the user wishes to test during simulation such as different correlations

amongst biomarkers (Barhak 2013D, 2014B). However, this can also include sensitivity analysis where a certain

population parameter is changed to see how it influences simulation results. The availability of HPC requires the

ability to easily generate many such hypotheses and handle them compactly.

Handling Individual Data

Being able to handle individual data derived from Electronic Medical Records (EMR) or a similar source is

important for the future. Such data may come in a table with missing values that require replacement with calculated

values and merged with another population defined by distributions.

Fortunately the above listed issues can be handled using known computer science techniques - mainly used in Object

Oriented Programming (Wikipedia Online C).

SUGGESTED OBJECT ORIENTED FRAMEWORK

Consider each population as a class where rules and objectives are similar to class methods. And consider the ability

to use inheritance to combine different populations into one. This is the main idea behind the approach presented

here. Yet some differences exist and deserve further explanation.

In addition to the population definitions stated above, of parameters associated rules and objectives, each population

will have an inheritance list.

Each element in the list will indicate:

 Inherited Population: Each such population may inherit others and therefore build an inheritance tree.

 Inheritance Type: One of the following elements: Rules, Objectives, or Data. Those indicate what would be

inherited and when.

The order of elements in the inheritance list is important since inherited elements are processed in order before

processing the inheriting population. Since inheritance can be nested creating an inheritance tree, processing in order

means traversing in Depth First Search (DFS) order (Wikipedia Online A).

Starting from an empty population each population in its turn will contribute/override the following elements

according to inheritance type:

 Rules: all rules that exist in the inherited population will be added to the inheriting population, possibly

overriding a rule that affects the same parameter

 Objectives: all objectives that exist in the inherited population will be added to the inheriting population,

possibly overriding an objective that has the same Filter Criteria, Statistics Expression, and Function. This

means target value and weight will be overridden for those elements while an objective with a different filter

criteria, for example, will be added as a different objective.

 Data: The population is generated according to rules and objectives and the data for each individual is

transformed into a table that creates a new rule which is passed to the inheriting population. No objectives or

original rules are inherited; the inheriting rules are similar to passing a table of data.

MODSIM World 2015

2015 Paper No. 76 Page 5 of 11

Data inheritance is different since it requires execution and therefore can be completed only in run time.

Nevertheless it is possible to deduce at compile time which parameters will be generated by the final inheriting

population, and therefore deduce dependencies amongst parameters in rules to avoid circular definitions where a

parameter references itself. This check is executed before compiling the rules to code that generates population data.

Data generation happens whenever data inheritance is encountered in the DFS search in the inheritance tree. It is

somewhat equivalent to inheriting an object in run-time. This is sometimes referred to as prototype inheritance in

scripting languages such as Python (Lutz 2006, Python Software Foundation - Online) as opposed to inheritance of

classes in compile time in languages such as C++. This will be made clearer by example.

EXAMPLES

The simplest examples would be reusing the population given as examples above as building blocks to construct a

population that contains those. For example if we want a population that contains both rules and objectives created

from populations A and C above we can create the following population:

Population D

Inheritance:

 (Population A, Rules)

 (Population C, Objectives)

The resulting population would have all rules and objectives without writing another piece of code. As shown in

Figure 1.

Figure 1. Population D inheritance tree – including rules, objectives, and source population in parenthesis.

Consider, however, that we wish to replace Age in this population after generation with the Age in population B. We

use inheritance in the following manner:

Population E

Inheritance:

 (Population D, Data)

 (Population B, Rules)

Pop D:

 Age (A)

 Male (A)

 Height (A)

 Weight (A)

 Objective 1 (C)

Pop A:

 Age (A)

 Male (A)

 Height (A)

 Weight (A)

Pop C:

 Objective 1 (C)

Rules

Objectives

MODSIM World 2015

2015 Paper No. 76 Page 6 of 11

Note that inheritance order here matters since Age rules in population B override the Age data generated in

population D. And note that data is passed for Male, Age, Height, and Weight so inheriting population E will have

those elements in it, yet those will all be represented as tables with data. See Figure 2.

Figure 2. Population E inheritance tree – including rules, objectives, and source population in parenthesis.

Another simple example would be building a population that inherits default values and overrides other values.

Consider that we wish to model the US population and know its death rate according to information in (Wikipedia

Online A). We can create a population with the Rule that holds the Crude DeathRate per 1000 table column from

1990. And by default set the Year to 2000. See Population F.

Population F

Rules:

 DeathRate ~ Table([[Year, [NaN, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,

2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012]]] , [8.1, 7.7, 7.4, 6.7, 6.4, 6, 5.9, 5.7,

5.8, 5.6, 5.9, 5.6, 5.5, 5.5, 5.9, 5.7, 6.2, 6.3, 5.9, 5.6, 5, 4.6, 4.5])/1000

 Year ~ 2000

Now we can merge population F with population D above yet indicate that the year would be 1990 instead of the

default set in F. This new population G will therefore be:

Population G

Inheritance:

 (Population F, Rules)

 (Population D, Rules)

 (Population D, Objectives)

Rules:

 Year ~ 1990

Pop D:

 Age (A)

 Male (A)

 Height (A)

 Weight (A)

 Objective 1 (C)

Pop A:

 Age (A)

 Male (A)

 Height (A)

 Weight (A)

Pop C:

 Objective 1 (C)

Rules

Objectives

Pop B:

 Age (B)

Pop E:

 Age (B)

 Male (Data D)

 Height (Data D)

 Weight (Data D)

Data

Rules

MODSIM World 2015

2015 Paper No. 76 Page 7 of 11

See Figure 3.

Figure 3. Population G inheritance tree – including rules, objectives, and source population in parenthesis.

Note that population D is inherited twice, once for rules and once for objectives. In this example the inheritance

order in the inheritance list does not change the final outcome since the rules defined in the inheriting population are

always applied last and therefore the year used to determine death rate would will be: 1990.

Assume that we have an alternative population with a death rate defined by a function that depends on Age rather

than Year that is defined as:

Population H

Rules:

 DeathRate ~ Max(0,Min(1,Age/120))

We can now easily reconstruct a population that uses a different death rate by replacing the building blocks yet

reconstruct population G otherwise. Population I demonstrates this:

Population I

Inheritance:

 (Population H, Rules)

 (Population D, Rules)

 (Population D, Objectives)

Rules:

 Year ~ 1995

Pop F:

DeathRate (F)

Year (F)

Pop A:

 Age (A)

 Male (A)

 Height (A)

 Weight (A)

Pop C:

 Objective 1 (C)

Rules

Objectives

Pop D:

 Age (A)

 Male (A)

 Height (A)

 Weight (A)

 Objective 1 (C)

Pop G:

 Age (A)

 Male (A)

 Height (A)

 Weight (A)

 DeathRate (F)

 Year (G)

 Objective 1 (C)

Rules

Rules

Objectives

MODSIM World 2015

2015 Paper No. 76 Page 8 of 11

Figure 4 shows the inheritance structure of population I and can be compared for Figure 3 that shows how

population G is constructed.

The formal difference between populations G and I is only using a different computational building block. These are

both variations exchanging different bases for computation.

Figure 4. Population I inheritance tree – including rules, objectives, and source population in parenthesis.

DISCUSSION

The ability to define, reuse, and exchange computational population generation building blocks provides important

flexibility. The Reference Model for disease progression is the main motivation behind this technology. The

Reference Model populations are extracted from literature statistics and contain repetitions and missing data, and

therefore these populations require defaults. The number of populations in the model is growing and each population

includes many parameters, rules, and objectives. Therefore an object oriented approach is required to humanly

manage the growing number of cohorts stored in the system. At the same time it is an important mechanism that

drives variation generation in the model.

The Reference Model uses variations in model hypotheses that are tested against known data. This modeling

methodology imitates the current trend of Evidence Based Medicine. Moreover it is at the heart of the scientific

method where experiments are made to test hypotheses. In this case the experiments are computational within a

virtual laboratory powered by HPC.

The use of HPC allows testing many more hypotheses and the ability to easily formulate them as interchangeable

building blocks is essential. Being able to generate populations allows us to test our understanding about unknown

initial condition hypotheses that were not reported. This is common in medical literature yet can be applicable to

other fields.

Pop H:

DeathRate (H)

Pop A:

 Age (A)

 Male (A)

 Height (A)

 Weight (A)

Pop C:

 Objective 1 (C)

Rules

Objectives

Pop D:

 Age (A)

 Male (A)

 Height (A)

 Weight (A)

 Objective 1 (C)

Pop I:

 Age (A)

 Male (A)

 Height (A)

 Weight (A)

 DeathRate (H)

 Year (I)

 Objective 1 (C)

Rules

Rules

Objectives

MODSIM World 2015

2015 Paper No. 76 Page 9 of 11

Although current modeling use does not require this feature, data inheritance was added to this generation

framework. This allows future developers to take this framework in different directions. For example using data

inheritance opens the opportunity for incorporating and cleaning up data arriving from EMR. This is accomplished

by replacing missing values with formulas or filtering out records to meet certain criteria at the individual or

population level. This flexibility is essential for future development that can include future inheritance types,

variations of interactions between data and objectives, and data specific operations.

Despite this theory being abstract, it is driven by the need for modular modeling – the ability to generate

interchangeable building blocks of interconnected data for simulation purposes. Consider that the output of this

generation is a table with numbers where each row is a record of an entity and the columns are user defined; there

can be many other uses other than disease modeling for this technology.

In this context, it may be interesting to mention two projects. SymPy (SymPy Development Team, Online) which

provides symbolic math tools and PyMC (PyMC @ Github, Online) which provide advanced Monte Carlo Tools.

Some of the concepts in this paper may be useful to consider within those scopes for possible extensions. In any

case, the concepts of this paper are important step towards modular modeling of populations.

ACKNOWLEDGMENTS

The base theory upon which this paper builds was a GPL disease modeling framework that was initially supported

by the Biostatistics and Economic Modeling Core of the MDRTC (P60DK020572) and by the Methods and

Measurement Core of the MCDTR (P30DK092926), both funded by the National Institute of Diabetes and Digestive

and Kidney Diseases. The modeling framework was initially defined as GPL and was funded by Chronic Disease

Modeling for Clinical Research Innovations grant (R21DK075077) from the same institute. The current version of

MIST to which the developments in this paper pertain was developed from this GPL framework without financial

support.

The author wishes to thank Aaron Garrett who developed the Inspyred library that enabled defining objectives. The

author also wished to thank the following individuals whose support and ideas initialized and allowed this project:

Deanna J.M. Isaman, Morton Brown, and William H. Herman. Thanks to Philip Standiford for proof reading.

ACKNOWLEDGEMENTS

The acknowledgements section is optional. If included, it appears after the main body of text and before the

references. This section includes acknowledgements of help from associates, credits to sponsoring agencies, etc.

Please try to limit acknowledgements to no more than a three or four sentence paragraph.

REFERENCES

Barhak J., Isaman D.J.M., Ye W., Lee D. (2010), Chronic disease modeling and simulation software, Journal of

Biomedical Informatics, 43(5) 791-799, http://dx.doi.org/10.1016/j.jbi.2010.06.003

Barhak J. (2012A), The Reference Model in the Mount Hood #6-2012 validation challenge and the uncertainty

challenge. The Mt hood challenge 6, June 7-8, 2012. Johns Hopkins Mt. Washington Conference Center.

Barhak J. (2012B), The Reference Model for Disease Progression. SciPy 2012, Austin Tx, 18-19 July 2012. Paper:

https://github.com/Jacob-

Barhak/scipy_proceedings/blob/2012/papers/Jacob_Barhak/TheReferenceModelSciPy2012.rst

Poster:

http://sites.google.com/site/jacobbarhak/home/PosterTheReferenceModel_SciPy2012_Submit_2012_07_14.pdf

Barhak J. (2012C) , The Reference Model for Chronic Disease Progression. 2012 Multiscale Modeling (MSM)

Consortium Meeting, October 22-23, 2012,

http://dx.doi.org/10.1016/j.jbi.2010.06.003
https://github.com/Jacob-Barhak/scipy_proceedings/blob/2012/papers/Jacob_Barhak/TheReferenceModelSciPy2012.rst
https://github.com/Jacob-Barhak/scipy_proceedings/blob/2012/papers/Jacob_Barhak/TheReferenceModelSciPy2012.rst
http://sites.google.com/site/jacobbarhak/home/PosterTheReferenceModel_SciPy2012_Submit_2012_07_14.pdf

MODSIM World 2015

2015 Paper No. 76 Page 10 of 11

Poster:

http://sites.google.com/site/jacobbarhak/home/PosterTheReferenceModel_IMAGE_MSM_Submit_2012_10_17.pdf

Barhak J. (2012D), The Reference Model: Improvement in Treatment Through Time in Diabetic Populations, The

Fourth International Conference in Computational Surgery and Dual Training. The Joseph B. Martin Conference

Center at Harvard Medical School. Boston, MA, USA. December 9-10-11, 2012. Presentation:
http://sites.google.com/site/ComputationalSurgery_Presneted_2012_12_LateUploadToOwnWebSite_2014_2_27.ppt

x

Barhak J. (2012E), The Reference Model: Improvement in Treatment Through Time in Diabetic Populations, The

Fourth International Conference in Computational Surgery and Dual Training. The Joseph B. Martin Conference

Center at Harvard Medical School. Boston, MA, USA. December 9-10-11, 2012. Presentation Slides:

http://sites.google.com/site/ComputationalSurgery_Presneted_2012_12_LateUploadToOwnWebSite_2014_2_27.ppt

x

Barhak J., Leff H.S., (2013A), Modeling a Chronic Disease Model and a Mental Health Model Using the Same

Modeling Tools, MODSIM World 2013, April 30 - May 2nd, Hampton Roads Convention Center in Hampton, VA.

Paper: http://sites.google.com/site/jacobbarhak/home/MODSIM_World2013_Submitted_04Apr2013.pdf

Presentation: http://sites.google.com/site/jacobbarhak/home/MODSIM_World_Presented_2013_05_2.pptx

Barhak J. (2013B), The Reference Model Scores Fitness of Models and Populations. Poster Presentation. ISPOR

18th Annual International Meeting, May 18-22, 2013, Sheraton New Orleans, New Orleans, LA, USA. Poster:

http://sites.google.com/site/jacobbarhak/home/PosterTheReferenceModel_ISPOR_Submit_2013_05_14.pdf

Barhak J. (2013C), MIST: Micro-Simulation Tool to Support Disease Modeling. SciPy, 2013, Bioinformatics track,

https://github.com/scipy/scipy2013_talks/tree/master/talks/jacob_barhak,

Presentation: http://sites.google.com/site/jacobbarhak/home/SciPy2013_MIST_Presented_2013_06_26.pptx

Video: http://www.youtube.com/watch?v=AD896WakR94

Barhak J (2013D), The Reference Model for Disease Progression Sensitivity to Bio-Marker Correlation in Base

Population - The Reference Model Runs with MIST Over the Cloud! 2013 IMAG Multiscale Modeling (MSM)

Consortium Meeting, October 2-3, 2013,

Poster:

http://sites.google.com/site/jacobbarhak/home/PosterTheReferenceModel_IMAG_MSM2013_Submit_2013_09_23.

pdf

Barhak J., Garrett A. (2014A), Population Generation from Statistics Using Genetic Algorithms with MIST +

INSPYRED. MODSIM World 2014, VA.

Paper:

http://sites.google.com/site/jacobbarhak/home/MODSIM2014_MIST_INSPYRED_Paper_Submit_2014_03_10.pdf

Presentation: http://sites.google.com/site/jacobbarhak/home/MODSIM_World_2014_Submit_2014_04_11.pptx

Barhak J. (2014B), The Reference Model for Disease Progression uses MIST to find data fitness. PyData Silicon

Valley 2014: Abstract: http://pydata.org/sv2014/abstracts/#195_

Presentation: http://sites.google.com/site/jacobbarhak/home/PyData_SV_2014_Upload_2014_05_02.pptx

Video: https://www.youtube.com/watch?v=vyvxiljc5vA

Barhak J. (2014C), The Mount Hood Diabetes Challenge 2014. The Reference Model for Disease Progression -

participated in the challenge, Stanford.

Presentation:

http://sites.google.com/site/jacobbarhak/home/MH2014TheReferenceModel_Submit_2014_06_15.pptx

Barhak J., (2014D) The Reference Model for Disease Progression – Data Quality Control. SummerSim 2014,

Monterey CA.

Presentation: http://sites.google.com/site/jacobbarhak/home/SummerSim2014_Upload_2014_07_06.pptx

http://sites.google.com/site/jacobbarhak/home/PosterTheReferenceModel_IMAGE_MSM_Submit_2012_10_17.pdf
https://sites.google.com/site/jacobbarhak/home/ComputationalSurgery_Presneted_2012_12_LateUploadToOwnWebSite_2014_2_27.pptx?attredirects=0
https://sites.google.com/site/jacobbarhak/home/ComputationalSurgery_Presneted_2012_12_LateUploadToOwnWebSite_2014_2_27.pptx?attredirects=0
http://sites.google.com/site/ComputationalSurgery_Presneted_2012_12_LateUploadToOwnWebSite_2014_2_27.pptx
http://sites.google.com/site/ComputationalSurgery_Presneted_2012_12_LateUploadToOwnWebSite_2014_2_27.pptx
http://sites.google.com/site/jacobbarhak/home/MODSIM_World2013_Submitted_04Apr2013.pdf
http://sites.google.com/site/jacobbarhak/home/MODSIM_World_Presented_2013_05_2.pptx
http://sites.google.com/site/jacobbarhak/home/PosterTheReferenceModel_ISPOR_Submit_2013_05_14.pdf
http://sites.google.com/site/jacobbarhak/home/SciPy2013_MIST_Presented_2013_06_26.pptx
http://www.youtube.com/watch?v=AD896WakR94
http://sites.google.com/site/jacobbarhak/home/PosterTheReferenceModel_IMAG_MSM2013_Submit_2013_09_23.pdf
http://sites.google.com/site/jacobbarhak/home/PosterTheReferenceModel_IMAG_MSM2013_Submit_2013_09_23.pdf
http://sites.google.com/site/jacobbarhak/home/MODSIM2014_MIST_INSPYRED_Paper_Submit_2014_03_10.pdf
http://sites.google.com/site/jacobbarhak/home/MODSIM_World_2014_Submit_2014_04_11.pptx
http://pydata.org/sv2014/abstracts/#195_
http://sites.google.com/site/jacobbarhak/home/PyData_SV_2014_Upload_2014_05_02.pptx
https://www.youtube.com/watch?v=vyvxiljc5vA
http://sites.google.com/site/jacobbarhak/home/MH2014TheReferenceModel_Submit_2014_06_15.pptx
http://sites.google.com/site/jacobbarhak/home/SummerSim2014_Upload_2014_07_06.pptx

MODSIM World 2015

2015 Paper No. 76 Page 11 of 11

Barhak J @ Github - MIcro Simulation Tool (MIST) (Online), https://github.com/Jacob-Barhak/MIST

Hayes A. J., Leal J., Gray A. M., Holman R. R., Clarke P. M., (2013) UKPDS Outcomes Model 2: a new version

of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year

United Kingdom Prospective Diabetes Study: UKPDS 82. Diabetologia 56:1925–1933,

http://dx.doi.org/10.1007/s00125-013-2940-y

Johnson R., McNutt P., MacMahon S., Robson R. (1997), Use of the Friedewald Formula to Estimate LDL-

Cholesterol in Patients with Chronic Renal Failure on Dialysis, Technical Briefs, Clinical Chemistry 43, No. 11,

1997, P. 2183

Lutz M, Programming Python, 3
rd

 Edition (2006). http://www.rmi.net/~lutz/about-pp3e.html

Moore G. E (1965).: “Cramming more components onto integrated circuits”. Electronics, Volume 38, Number 8,

April 19th, 1965.

Moore’s Law – Wikipedia, http://en.wikipedia.org/wiki/Moore's_law . Accessed 15-Oct-2014

PyMC @ Github PyMC 3 on Github (Online). https://github.com/pymc-devs/pymc/tree/pymc3 . Accessed 16-Oct-

2014

Python Software Foundation (Online) The Python Tutorial, https://docs.python.org/2/tutorial/ Accessed 18-Feb-

2015

SymPy Development Team (Online) SymPy. http://sympy.org/en/index.html Accessed 16-Oct-2014

Tolk A, Diallo S Y, Padilla J J, Herencia-Zapana H (2013), Reference modelling in support of M&S—foundations

and applications, Journal of Simulation 7, 69–82. http://dx.doi.org/10.1057/jos.2013.3

Wikipedia (Online A), Demographics of the United States ,

http://en.m.wikipedia.org/wiki/Demographics_of_the_United_States Accessed 16-Oct-2014

Wikipedia (Online B), Depth-first search, http://en.m.wikipedia.org/wiki/Depth-first_search, Accessed 16-Oct-2014

Wikipedia (Online C) Object-oriented programming , http://en.wikipedia.org/wiki/Object-oriented_programming,

Accessed 16-Oct-2014

https://github.com/Jacob-Barhak/MIST
http://dx.doi.org/10.1007/s00125-013-2940-y
http://www.rmi.net/~lutz/about-pp3e.html
http://en.wikipedia.org/wiki/Moore's_law
https://github.com/pymc-devs/pymc/tree/pymc3
https://docs.python.org/2/tutorial/
http://sympy.org/en/index.html
http://dx.doi.org/10.1057/jos.2013.3
http://en.m.wikipedia.org/wiki/Demographics_of_the_United_States%20Accessed%2016-Oct-2014
http://en.m.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Object-oriented_programming

